Hilbert Spaces

Ryan T Whyte

Fullerton College

24 May 2018

Outline

(1) Introduction
(2) Definitions

- Operators
- Field, Vector Space, Inner Product Space

Question

- Are there natural, separable Hilbert Spaces on the Euclidean Ball for which all composition operators are bounded?

Background

- David Hilbert (1862-1943)

Binary Operators

- Definition: "*" is called a binary operation on a set A iff * : $A \times A \rightarrow A$.
- Example: $-: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $-(x, y):=x-y$ Since $-: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, where $\mathbb{R}=\mathbb{R}$," -" is a binary operator on \mathbb{R}.

Composition Operators

- Definition: " C_{ϕ} " is called a composition operation on a function f iff $C_{\phi}(f)=f \circ \phi$ where $f \circ \phi$ denotes usual function composition.
- Example: Let $f: Y \rightarrow Z$ and $g: X \rightarrow Y$. Then $C_{g}(f)=f \circ g: X \rightarrow Z$

Field

- Definition: We call \mathcal{F} a field iff $\mathcal{F}=(F,+, \cdot)$, where:
- F is a non-empty set;
- + is a binary operation on F;
- $\forall a, b, c \in F,(a+b)+c=a+(b+c)$;
- $\forall a, b, c \in F,(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
- $\forall a, b \in F, a+b=b+a$;
- $\forall a, b \in F, a b=b a$;
- $\forall a, b, c \in F, a(b+c)=a b+a c$;
- $\forall a, b, c \in F,(a+b) c=a c+b c$;
- $\exists 0_{F} \in F$ such that $x+0_{F}=x=0_{F}+x, \forall x \in F$;
- $\exists 1_{F} \in F$ such that $1_{F} \neq 0_{F}$ and $a \cdot 1_{F}=a=1_{F} \cdot a$, where $a \in \mathbb{C}$;
- $\forall x \in F$ such that $x \neq 0_{F}, \exists x^{-1} \in F$ such that $x \cdot x^{-1}=x^{-1} \cdot x=1_{F}$;
- $\forall x \in F, \exists-x \in F$ such that $x+(-x)=0_{F}=(-x)+x$.

Field Example

- Suppose that $\mathcal{J}=(\mathbb{C},+, \cdot)$, where + and \cdot are usual complex addition and complex multiplication, and \mathbb{C} is the set of all complex numbers. Show that $(\mathbb{C},+, \cdot)$ is a field.
- Let $a, b, c \in \mathbb{C}$
- $2+7 \iota \in \mathbb{C} \therefore \mathbb{C}$ is a non-empty set.
- By the Closure Property of usual complex number addition, + is a binary operator on \mathbb{C}, and by Closure Property of usual complex number multiplication, - is a binary operator on \mathbb{C}
- From Algebra 2 we know that the following hold true:
- $(a+b)+c=a+(b+c)$;
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
- $a+b=b+a$;
- $a b=b a ;$
- $a(b+c)=a b+a c$;
- $(a+b) c=a c+b c$;
- $a+(-a)=0+0 \imath=0$
- $a \cdot\left(\frac{1}{a}\right)=1+0 \imath=1$
- Let $0_{\mathbb{C}}:=0+0 \imath$, then $a+0+0 \imath=a$. This implies $a+0_{\mathbb{C}}=a$;
- Let $1_{\mathbb{C}}:=1+0 \imath$, then $a \cdot(1+0 \imath)=a+a \cdot 0 \imath=a$. Note that $1+0 \imath \neq 0+0 \imath$, $\therefore 1_{\mathbb{C}} \neq 0_{\mathbb{C}}$. This implies $a \cdot 1_{\mathbb{C}}=a$;

Vector Spaces

- Definition: Let $\mathcal{F}=(F,+, \cdot)$ be a field. We call \mathcal{V} an an \mathcal{F}-vector space, or, alternatively, a vector space over \mathcal{F}, iff $\mathcal{V}=(V, \mathcal{F}, \oplus, \bullet)$ and the following axioms hold:
- V is a non-empty set. (Non-emptiness Property)
- \oplus is a binary operation on V. (Closure Property of Addition)
- - is an F-multiplication on V. (Closure Property of \bullet)
- $\exists 0_{V} \in V$ such that $v \oplus 0_{V}=0_{V} \oplus v=v \forall v \in V$. (Additive Identity Property)
- $\forall v \in V \exists(-v) \in V$ such that $v \oplus(-v)=(-v) \oplus v=0 v$. (Additive Inverse Property)
- $v \oplus w=w \oplus v \forall v, w \in V$. (Commutative Property of \oplus)
- $u \oplus(v \oplus w)=(u \oplus v) \oplus w \forall u, v, w \in V$. (Associative Property of \oplus)
- $1_{F} v=v \forall v \in V$. (Multiplicative Identity Property)
- If $\alpha, \beta \in F$ and $v \in V$, then $(\alpha+\beta) v=\alpha v \oplus \beta v$. (Distributive Property of \mathcal{F} over V)
- $\forall \alpha \in F, u, v \in V$, we have that $\alpha(u \oplus v)=\alpha u \oplus \alpha v$. (Distributive Property of \mathcal{V} over \mathcal{F})
- $\forall \alpha, \beta \in F$ and $v \in V$, we have that $(\alpha \beta) v=\alpha(\beta v)$. (Associative Property of F-multiplication on V)
- We call a vector space \mathcal{V} real iff $\mathcal{V}=(V,(\mathbb{R},+, \cdot), \oplus, \bullet)$, where + and \cdot denote usual real addition and multiplication, respectively.
- We call a vector space \mathcal{V} complex iff $\mathcal{V}=(V,(\mathbb{C},+, \cdot), \oplus, \bullet)$, where + and \cdot denote usual complex addition and multiplication, respectively.

Vector Space Example

- Let $\mathcal{E}:=(\mathbb{C}, \mathcal{J},+, \cdot)$, where + and \cdot are usual complex addition and complex multiplication, respectively, and $\mathcal{J}(\mathbb{C},+, \cdot)$ is the previously mentioned field. Let's prove that \mathcal{V} is an \mathcal{J}-vector space.
- Let $\alpha, \beta \in \mathcal{J}$ and $u, v, w \in \mathbb{C}$
- $2+7 \imath \in \mathbb{C} \therefore \mathbb{C}$ is a non-empty set.
- By the Closure Property of usual complex number addition, + is a binary operator on \mathbb{C}, and by the Closure Property of usual complex number multiplication, \cdot is a binary operator on \mathbb{C}
- From Algebra 2 we know that the following hold true:
- $v+(-v)=0+0 \imath=0$;
- $v+w=w+v$;
- $u+(v+w)=(u+v)+w$;
- $\alpha \cdot(v+w)=\alpha v+\alpha w$;
- $(\alpha+\beta) \cdot v=\alpha v+\beta v$;
- $(\alpha \cdot \beta) \cdot v=\alpha v \cdot \beta v$
- Let $0_{\mathbb{C}}:=0+0 \imath$, then $v+0+0 \imath=v$. This implies $v+0_{\mathbb{C}}=v$;
- Let $\mathbb{1}_{\mathbb{C}}:=1+0 \imath$, then $v \cdot(1+0 \imath)=v+v \cdot 0 \imath=v$. Note that $1+0_{\imath} \neq 0+0_{\imath}, \therefore 1_{\mathbb{C}} \neq 0_{\mathbb{C}}$. This implies $v \cdot 1_{\mathbb{C}}=v$;

Inner Product Spaces

- Definition: Let \mathcal{E} be a complex vector space. A mapping $\langle\cdot, \cdot\rangle E \times E \rightarrow \mathbb{C}$ is called an inner product space in E if $\forall x, y, z \in E$ and $a \in \mathbb{C}$ the following conditions are satisfied:
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$ (Hermetian Symmetric);
- $\langle a \cdot x, y\rangle=\alpha \cdot\langle x, y\rangle$ (Linearity in the first argument);
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$;
- $\langle x, x\rangle \geq 0$ (Positive-definiteness);
- $\langle x, x\rangle=0$ iff $x=0$;

Inner Product Example

- Prove the following statements:
- Let $\mathcal{C}^{n}=\left(\mathbb{C}^{n}, \oplus, \odot\right)$, where $\oplus: \mathbb{C}^{n} \times \mathbb{C}^{n} \in \mathbb{C}^{n}$ is given by $\oplus(z, w)=\left(z_{1}+w_{1}, z_{2}+w_{2}, \ldots, z_{n}+w_{n}\right)$ and $\odot:\left(\mathbb{C} \times \mathbb{C}^{n}\right) \cup\left(\mathbb{C}^{n}, \mathbb{C}\right) \in \mathbb{C}^{n}$ is given by $\odot(\alpha, z)=\odot(z, \alpha)=\left(\alpha z_{1}, \alpha z_{2}, \ldots, \alpha z_{n}\right)$. Then \mathcal{C}^{n} is a complex vector space.
- Define $I: \mathbb{C}^{n} \times \mathbb{C}^{n} \in \mathbb{C}^{n}$ by $I(z, w)=$

