Hilbert Spaces

Ryan T Whyte

Fullerton College

24 May 2018

Ryan T Whyte (Fullerton College)

A Look at Hilbert Spaces

Outline

- Operators
- Field, Vector Space, Inner Product Space

• Are there natural, separable Hilbert Spaces on the Euclidean Ball for which all composition operators are bounded?

Background

• David Hilbert (1862-1943)

Definition: "*" is called a *binary operation* on a set A iff
 *: A × A → A.

Example: -: ℝ × ℝ → ℝ by -(x, y) := x - y
 Since -: ℝ × ℝ → ℝ, where ℝ = ℝ, "-" is a binary operator on ℝ.

• Definition: " C_{ϕ} " is called a *composition operation* on a function f iff $C_{\phi}(f) = f \circ \phi$ where $f \circ \phi$ denotes usual function composition.

• Example: Let $f : Y \to Z$ and $g : X \to Y$. Then $C_g(f) = f \circ g : X \to Z$

Field

• Definition: We call \mathcal{F} a *field* iff $\mathcal{F} = (F, +, \cdot)$, where:

• F is a non-empty set; • + is a binary operation on F: • $\forall a, b, c \in F, (a + b) + c = a + (b + c);$ • $\forall a, b, c \in F, (a \cdot b) \cdot c = a \cdot (b \cdot c);$ • $\forall a, b \in F, a + b = b + a$: • $\forall a, b \in F, ab = ba$: • $\forall a, b, c \in F, a(b+c) = ab + ac;$ • $\forall a, b, c \in F, (a+b)c = ac + bc;$ • $\exists 0_F \in F$ such that $x + 0_F = x = 0_F + x, \forall x \in F$; • $\exists 1_F \in F$ such that $1_F \neq 0_F$ and $a \cdot 1_F = a = 1_F \cdot a$, where $a \in \mathbb{C}$; • $\forall x \in F$ such that $x \neq 0_F$, $\exists x^{-1} \in F$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1_F$. • $\forall x \in F, \exists -x \in F \text{ such that } x + (-x) = 0_F = (-x) + x.$

Field Example

- Suppose that J = (C, +, ·), where + and · are usual complex addition and complex multiplication, and C is the set of all complex numbers. Show that (C, +, ·) is a field.
 - Let $a, b, c \in \mathbb{C}$
 - $2 + 7i \in \mathbb{C} \therefore \mathbb{C}$ is a non-empty set.
 - By the Closure Property of usual complex number addition, + is a binary operator on C, and by Closure Property of usual complex number multiplication,
 is a binary operator on C
 - From Algebra 2 we know that the following hold true:

•
$$(a+b)+c = a+(b+c);$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c);$$

- ab = ba;
- a(b+c) = ab + ac;
- (a+b)c = ac + bc;
- a + (-a) = 0 + 0i = 0
- $a \cdot \left(\frac{1}{a}\right) = 1 + 0i = 1$

• Let $0_{\mathbb{C}} \coloneqq 0 + 0i$, then a + 0 + 0i = a. This implies $a + 0_{\mathbb{C}} = a$;

• Let $1_{\mathbb{C}} := 1 + 0i$, then $a \cdot (1 + 0i) = a + a \cdot 0i = a$. Note that $1 + 0i \neq 0 + 0i$, $\therefore 1_{\mathbb{C}} \neq 0_{\mathbb{C}}$. This implies $a \cdot 1_{\mathbb{C}} = a$;

Vector Spaces

- Definition: Let $\mathcal{F} = (F, +, \cdot)$ be a field. We call \mathcal{V} an an \mathcal{F} -vector space, or, alternatively, a vector space over \mathcal{F} , iff $\mathcal{V} = (V, \mathcal{F}, \oplus, \bullet)$ and the following axioms hold:
 - V is a non-empty set. (Non-emptiness Property)
 - \oplus is a binary operation on V. (Closure Property of Addition)
 - • is an *F*-multiplication on *V*. (Closure Property of •)
 - $\exists 0_V \in V$ such that $v \oplus 0_V = 0_V \oplus v = v \ \forall v \in V$. (Additive Identity Property)
 - $\forall v \in V \exists (-v) \in V$ such that $v \oplus (-v) = (-v) \oplus v = 0_V$. (Additive Inverse Property)
 - $v \oplus w = w \oplus v \ \forall v, w \in V$. (Commutative Property of \oplus)
 - $u \oplus (v \oplus w) = (u \oplus v) \oplus w \ \forall u, v, w \in V.$ (Associative Property of \oplus)
 - $1_F v = v \ \forall v \in V$. (Multiplicative Identity Property)
 - If $\alpha, \beta \in F$ and $v \in V$, then $(\alpha + \beta)v = \alpha v \oplus \beta v$. (Distributive Property of \mathcal{F} over V)
 - ∀α ∈ F, u, v ∈ V, we have that α(u ⊕ v) = αu ⊕ αv. (Distributive Property of V over F)
 - $\forall \alpha, \beta \in F$ and $v \in V$, we have that $(\alpha \beta)v = \alpha(\beta v)$. (Associative Property of *F*-multiplication on *V*)
- We call a vector space V real iff V = (V, (ℝ, +, ·), ⊕, •), where + and · denote usual real addition and multiplication, respectively.
- We call a vector space V complex iff V = (V, (C, +, ·), ⊕, •), where + and · denote usual complex addition and multiplication, respectively.

Vector Space Example

Let E := (C, J, +, ·), where + and · are usual complex addition and complex multiplication, respectively, and J(C, +, ·) is the previously mentioned field. Let's prove that V is an J-vector space.

• Let
$$\alpha, \beta \in \mathcal{J}$$
 and $u, v, w \in \mathbb{C}$

- $2 + 7i \in \mathbb{C} \therefore \mathbb{C}$ is a non-empty set.
- By the Closure Property of usual complex number addition, + is a binary operator on \mathbb{C} , and by the Closure Property of usual complex number multiplication, \cdot is a binary operator on \mathbb{C}
- From Algebra 2 we know that the following hold true:

•
$$v + (-v) = 0 + 0i = 0;$$

• $v + w = w + v;$
• $u + (v + w) = (u + v) + w;$
• $\alpha \cdot (v + w) = \alpha v + \alpha w;$
• $(\alpha + \beta) \cdot v = \alpha v + \beta v;$
• $(\alpha \cdot \beta) \cdot v = \alpha v \cdot \beta v$
Let $0_{\mathbb{C}} := 0 + 0i$, then $v + 0 + 0i = v$. This implies $v + 0_{\mathbb{C}} = v;$
Let $1_{\mathbb{C}} := 1 + 0i$, then $v \cdot (1 + 0i) = v + v \cdot 0i = v$. Note that
 $1 + 0i \neq 0 + 0i, \therefore 1_{\mathbb{C}} \neq 0_{\mathbb{C}}.$ This implies $v \cdot 1_{\mathbb{C}} = v;$

•
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
 (Hermetian Symmetric);

• $\langle a \cdot x, y \rangle = \alpha \cdot \langle x, y \rangle$ (Linearity in the first argument);

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle;$$

•
$$\langle x, x \rangle = 0$$
 iff $x = 0$;

• Prove the following statements:

• Let
$$C^n = (\mathbb{C}^n, \oplus, \odot)$$
, where $\oplus : \mathbb{C}^n \times \mathbb{C}^n \in \mathbb{C}^n$ is given by
 $\oplus(z, w) = (z_1 + w_1, z_2 + w_2, \dots, z_n + w_n)$ and
 $\odot : (\mathbb{C} \times \mathbb{C}^n) \cup (\mathbb{C}^n, \mathbb{C}) \in \mathbb{C}^n$ is given by
 $\odot(\alpha, z) = \odot(z, \alpha) = (\alpha z_1, \alpha z_2, \dots, \alpha z_n)$. Then C^n is a complex vector space.

• Define
$$I : \mathbb{C}^n \times \mathbb{C}^n \in \mathbb{C}^n$$
 by $I(z, w) =$