
laackvet Thor Laack-Veeder Problem 2.1, Hand-in 3 CS252, Winter 2014

Time estimate: 300 minutes Collaborated with Pat Dale, Colby Seyferth

I will begin by assuming zero base in this problem.
Given:
Set R = {r1, r2, ..., rn}, the set of robots.
Set G = {g1, g2, ..., gn}, the set of generators.
ri’s preference order on g ∀ i

Output:
A perfect matching of R to G with no instabilities.
A matching of R ang G is a pairing {(r,g) | r ∈ R, | g ∈ G} and no r or g is matched > once.
A perfect matching is one which every generator is shut down by one robot, that is, everyone has a
match.
An instability exists if (r1, g2) are matched, but r2 visits g2 after match, destroying the robot and
leaving an undestroyed generator later.

Algorithm

1. Let P represent the generator preference list, which is the reverse of the list of the sorted list of
robot services for that generator.

(a) For example, let rn represent the last robot to service generator gn and let rk represent the
second to last robot to service generator gn. P[gn] = [rn,rk].

2. Let rn represent the robot that services a particular generator, gn, last.

(a) Note: rn can be a single robot or a group.

(b) Note: If rn is a group of robots, all the robots in that group will visit a different generator
first because no two robots can service the same generator at the same time.

3. For each robot from rn to r1
ri sets to destroy first scheduled generator
Generator will accept/be destoryed if:

(a) open/hasn’t been set to be destroyed by a particular robot
or
indice of ri in P[ ] < indice of current match, rj in G[ ].

Proof of Correctness

Claim: The algorithm termiates in ≤ n2 steps.
Proof: Each iteration through the list causes a new service/virus request. There are n2 possible
service/virus requests.

Claim: The algorithm returns a perfect matching.
Proof: Suppose not.
Then ∃ an un-destroyed generator g ∈ G. Then no robot destroyed g. |R| = |G| = n, therefore ∃ a
robot that did not destroy a generator. Therefore, r is an unmatched robot who hasn’t been designed
to destroy a particular generator. Therefore, the algorithm did not terminate, which is a contradiction.
Because there exists a contradition, we reject the notion that the algorithm does not return a perfect
matching.

Proof of Efficiency
Claim: The algorithm’s efficiency is on the order of O(n2)
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Proof: To prove the algorithm’s efficiency, I want to look at both the pre-processing scheme, and then
the match creation of robot and generator.
In the pre-processing scheme, the algorithm constructs an array P, to represent the preference list for a
particular generator g, which takes into account the service schedules of each robot. Again, the
preference list for a particular generator g is simply the reverse of the list of robots servicing g
throughout the day, where rn is the last robot to service g, and the first element of array P. Because
there are n robots that serve each generator, to construct a preference list, P, for a given generator g,
will be on the order of O(n).
|R| = |G| = n, therefore there must a preference list created for n generators, which makes the
efficiency O(n ∗ n), which equals O(n2).
After the preference list for each generator is created, the matching scheme begins.
For each robot from rn to r1, ri will see if it is to destroy its first scheduled generator. Because there
are n robots, this step will be O(n). The generator will accept if it is open to be destroyed, of if the
particular ri is higher on its preference list. Again, since there are n robots trying to destory n
generators, this operation will also be O(n). Because the each process described is implemented with a
for loop and they are nested for loops, you again multiply the efficiencies of each process, O(n * n),
which becomes O(n2).
To determine the total efficiency of the algorithm, you add the efficiencies of the pre-processing scheme
and matching-scheme, O(n2 + n2), which equals O(2n2), which equals O(n2).
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