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Abstract—For an electron moving in a circular path in a mag-
netic field, if we know the magnetic field strength, accelerating
voltage, and radius of the electron’s trajectory, then we can make
an estimation of the electron’s charge to mass ratio. We calculated
an average charge to mass ratio of 2.08 × 1011 ± 1.81 × 108

Coulombs per kilogram.

I. THEORY

TO come up with a procedure to measure the charge
to mass ratio of an electron, we had to find a way to

relate the two quantities to each other mathematically. The first
important relationship is between an electron’s kinetic energy
K and total energy E.

K =
1

2
mv2 (1)

E = eV (2)

m is the electron’s mass in kilograms, v is the electron’s
velocity in meters per second, e is the electron’s charge in
Coulombs, and V is the accelerating voltage in Volts.

When an electron is in motion, all if its energy is kinetic,
and we can relate eq. 1 and eq. 2 in:

1

2
mv2 = eV (3)

When the moving charged particle is subjected to a magnetic
field, it experiences a force that is always perpendicular to its
velocity v. The magnitude of this force F can be calculated
in:

F = evB (4)

B is the strength of the magnetic field in Teslas. Because
this force is always perpendicular to the particle’s motion, it
causes the particle to travel in a circular path. The force on a
particle in a circular path can also be computed in:

F =
mv2

R
(5)

R is the radius of the circular path in meters. By setting
eq. 4 and eq. 5 equal to each other, we find the following
relationship:

evB =
mv2

R
(6)

where we can solve for velocity v.

v =
eBR

m
(7)

Substituting this value of v into eq. 3 allows us to find a way
to directly calculate the charge to mass ratio of the electron.

e

m
=

2V

R2B2
(8)

Therefore, all we need to know to find the charge to mass
ratio of the electron undergoing circular motion in a magnetic
field is the magnetic field strength B, the accelerating voltage
V , and the radius of the electron’s path R.

II. APPROACH

The approach we used to measure the charge to mass ratio of
the electron was designed after the experiment of Bainbridge
[1]. The apparatus used consists of a vacuum tube supported
between Helmholtz coils. A filament contained inside an anode
with a single slit releases a thin beam of electrons into the
vacuum tube, whose paths are made visible by mercury vapor
in the vacuum tube. A power supply provides voltage to the
anode and a DC Voltemeter attached across is used to record
it. An Adjust-A-Volt is attached to the filament to control the
current running through the filament. A separate power supply
is used to power the Helmholtz coils.

When the filament is heated by running current through
it, electrons are evaporated out into a negatively charged
”cloud” via thermionic emission. The anode, which is kept at a
positive potential relative to the filament, attracts the electrons
and accelerates them away from the filament. The potential
difference between the anode and the filament provides the
accelerating potential V from eq. 8.

Once the electrons have escaped the anode, they are sub-
jected to a magnetic field provided by the Helmholtz coils and
travel in a circular path until they collide with a mercury atom.
If the electron has enough kinetic energy, one of the mercury’s
electrons is ejected. When another electron takes its place, the
excess energy given off is visible as blue light and makes
it possible to see the electron beam. If the pressure is too
high in the vacuum tubes, the electrons will only travel too
small a distance before colliding with a particle to make a full
beam. If the pressure is too low, too few collisions will take
place to see the electron beam. At a pressure of about 10−4

atmospheres, the electrons can travel about 8 to 10 centimeters
before colliding with another particle, and enough collisions
occur to see the electron beam.

Once the electron leaves the anode, all of its energy is
kinetic and can be computed in eq. 1. This allows us to use the
relationship between kinetic energy and total energy shown in
eq. 3.

To measure the charge to mass ratio of the electron, we need
three measurements: the radius of the electrons’ circular path
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R, the accelerating voltage V of the anode, and the magnetic
field strength B provided by the Helmholtz coils.

The radius of the electrons’ path is measured by sight
using measurement posts attached to the vacuum tube. The
accelerating voltage is set using the anode power supply
and recorded using the DC Voltemeter attached across. The
magnetic field strength of the Helmholtz coil is computed from
the equation for a magnetic field around current-carrying coil.

B =
8µNI√
125a

(9)

µ is the permeability of free space, 4π×10−7 Tesla-meters
per square meter. N is the number of turns in the Helmholtz
coils, which in this case is 72. a is the radius of the coils,
which in this case is 0.33 meters. I is the current running
through the Helmholtz coils in Ampheres, which is set by the
Helmholtz power supply.

By manipulating the strength of the magnetic field with the
current running through the Helmholtz coils, we can change
the radius of the electrons’ path. We took 5 measurements for
each of 3 different values of accelerating voltage in the anode:
25V, 30V, and 35V. At each value, we recorded the current
through the Helmholtz coils needed to produce a circular path
with each of the five measurement posts inside the vacuum
tube. In total, this gave us 15 different sets of data.

TABLE I
INITIAL OBSERVATIONS

Anode Voltage V (V) Radius R (cm) Helmholtz Current I (A)
24.9 3.20 2.50
24.9 3.90 2.08
24.9 4.50 1.72
24.9 5.20 1.51
24.9 5.70 1.30
29.9 3.20 2.78
29.9 3.90 2.27
29.9 4.50 1.94
29.9 5.20 1.66
29.9 5.70 1.45
35.0 3.20 3.03
35.0 3.90 2.51
35.0 4.50 2.09
35.0 5.20 1.78
35.0 5.70 1.58

We assumed no uncertainty for R as those values were given
to us. For the uncertainty of V and I , we assumed a constant
uncertainty for the values given to us by the DC Voltemeter
and power supply.

σV =
0.1√
12
V (10)

σI =
0.1√
12
A (11)

Using the value of current through the Helmholtz coil
at each data point, we then calculated the strength of the
magnetic field using eq. 9 for each data point.

For our uncertainty of the magnetic field, we found a
constant error with eq. 12.

TABLE II
MAGNETIC FIELD STRENGTH AT EACH DATA POINT

V (V) R (cm) Magnetic Field Strength B (G)
24.9 3.20 4.90
24.9 3.90 4.08
24.9 4.50 3.37
24.9 5.20 2.96
24.9 5.70 2.55
29.9 3.20 5.45
29.9 3.90 4.45
29.9 4.50 3.80
29.9 5.20 3.25
29.9 5.70 2.84
35.0 3.20 5.96
35.0 3.90 4.92
35.0 4.50 4.10
35.0 5.20 3.49
35.0 5.70 3.10

σB = (
8µN√
125a

)σI = 5.66× 10−3G (12)

With V , R, and B recorded at each data point, we then
calculated the charge to mass ratio and the uncertainty of the
ratio at each data point.

TABLE III
CHARGE TO MASS RATIO AT EACH POINT

V (V) R (cm) e/m (C/kg) σe/m (C/kg)
24.9 3.20 2.01× 1011 5.18× 108

24.9 3.90 1.97× 1011 5.93× 108

24.9 4.50 2.16× 1011 7.69× 108

24.9 5.20 2.10× 1011 8.40× 108

24.9 5.70 2.36× 1011 1.08× 109

29.9 3.20 1.97× 1011 4.51× 108

29.9 3.90 1.99× 1011 5.40× 108

29.9 4.50 2.04× 1011 6.39× 108

29.9 5.20 2.09× 1011 7.54× 108

29.9 5.70 2.28× 1011 9.34× 108

35.0 3.20 1.93× 1011 3.99× 108

35.0 3.90 1.90× 1011 4.65× 108

35.0 4.50 2.06× 1011 5.94× 108

35.0 5.20 2.13× 1011 7.12× 108

35.0 5.70 2.25× 1011 8.42× 108

For the uncertainty of the charge to mass ratio, we used the
following equation at each data point.

σ
e

m
=

√
(
d( e

m )

dB
)2σB2 +

d( e
m )

dV
)2σV 2 (13)

σ
e

m
=

√
(
4V

B3R
)2σB2 + (

2

B2R2
)2σV 2 (14)

We calculated an average charge to mass ratio of 2.08 ×
1011 ± 1.81× 108 Coulombs per kilogram.

III. CONCLUSION

The accepted value for the charge to mass ratio of the
electron is 1.76×1011 Coulombs per kilogram compared to our
value of 2.08×1011±1.81×108 Coulombs per kilogram. The
accepted value was not within the uncertainty of our calculated
value. Our value was 15.3 percent away from the accepted
value.
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I think our data was inaccurate partially because the equip-
ment used was old and thus less precise. This experiment
was heavily dependent upon measurements taken from the DC
Voltemeter and the operation of the power supplies and Adjust-
A-Volt. I think if we retried the experiment with newer, more
precise equipment, our data would have been closer to the
accepted value.

I also think our data was inaccurate because we used the
equation for Newtonian kinetic energy in this experiment (eq.
1) rather than using relativistic energy. According to special
relativity, the actual total energy of a particle with mass is:

E = γmc2 (15)

in which γ is defined as:

γ =
1√

1− v2

c2

(16)

c is the speed of light, 3.00×108 meters per second, and v is
the velocity of the particle measured by a stationary observer.
As v approaches c, the value of γ approaches infinity.

For a particle at rest, γ simplifies to 1. That means that the
energy of a particle at rest is given by:

E = mc2 (17)

Then, the kinetic energy of a particle is given by the total
energy minus the rest energy:

K = (γ − 1)mc2 (18)

Thus, if the velocity of the electrons in the vacuum tube is
sufficient, this true value of their kinetic energy could deviate
from the value of the energy given by eq. 1. This factor must
be taken into account as a reason our measured value of the
charge to mass ratio is different from the accepted value.

I also think our data was inaccurate because we took too
few measurements. If we retried the experiment with more
data points, our measured value would be more accurate.

IV. ACKNOWLEDGEMENTS

I would like to thank my lab partner Ian Dulchinos for
his input and contribution to the measurements taken in this
experiment. I would like to thank William Schultz for his
guidance in this experiment. The equipment used was provided
by Physics 4L laboratory fees at the University of California,
Santa Barbara.

REFERENCES

[1] Romblom, Dave and Robert Pizzi. Physics 3L/4L Laboratory Manual.
Hayden-McNeil Publishing, USA, 4th edition, 2016.


