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1 Introduction
In this paper, we will be doing a step by step solution to a common induction

problem.Also it is show and given in many books in the study of number theory
and reasoning and proofs.

2 Formula

We are given the formula
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with n element of the natural numbers.

3 Proof:

Now we begin by running off a few terms to help see the pattern emerge.

2 _ n(2n+1)(n+1)

[e.e]
D124 44245+t
n=1

Let’s assume that n=1
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Next we assume that n=k and that k is an element of of the natural numbers.An
we will use this equation in the Induction hypothesis that we denote as equation
1.
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To obtain the next term, we add k square with k41 square to both sides of the
equation.
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Now we simplify the formula to aide in seeing the connection.
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From the induction hypotheses, we use equation 1 on the left hand side (LHS)
and substitute it in for the induction process.
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Now we factor out a (k+1) on the (LHS) of the equation.
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Next we combine the left hand side (LHS) equation by finding the greatest
conman factor (GCF).
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The next step is that we factor the (LHS) of the equation.
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Then we combine like terms on the (LHS).
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Now we factor the (LHS) numerator.
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Final we factor the (k+1) back in the (LHS) of the equation.
(k+1)2k+3)(k+1) (E+1)(2k+3)(k+2)

6 6

Thus we achieved what we desired.

Reference: David M.Burton, Elements of Number Theory,page 3



