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The material used for this lecture can be found in Rocket Propulsion Elements written by

George Sutton, Oscar Biblarz, as well as, Orbital Mechanics for Engineering Students writ-

ten by Howard Curtis.

Rocket science is hard. It’s almost darn near impossible. To help reduce some of this

complexity engineers make assumptions about the system to reduce equations into solvable

forms. A common assumption made for rocket propulsion is that the rocket has a constant

mass flow as seen in the equation below.

ṁ = const. =
mp

tp
(1)

Where mp is the total propellant left (i.e. usable propellant) and tp is the total burn time.

Lets use this assumption to examine the velocity change of a rocket while it’s in space. Since

the rocket at question is assumed to be in space, we will make two more assumptions; the

space environment is zero-gravity and there is no drag. Recall from elementary physics,

thrust can be expressed as

F = m · du
dt

(2)

The mass is a function of time and is shown in Eq. 3. Here m0 is the starting initial mass,

the mass of the propellant plus the mass of the rocket final rocket structure.

m = m0 − ṁt (3)

A substitution can be made for ṁ and Eq. 1. The result is Eq. 4.

m = m0 −
mp

tp
t (4)

From here we can define two new terms the propellant mass fraction and mass ratio, ζ and

MR respectively. The mass fraction, ζ, is defined as the remaining propellant mass divided
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by the initial mass. By factoring out m0 from Eq. 4, we can represent the mass as a function

of the mass fraction.

m = m0

(
1− ζ t

tp

)
(5)

This can be done for the mass ratio shown in Eq. 6. Note that the mass ratio is the final

mass to the initial mass.

m = m0

[
1− (1−MR)

t

tp

]
(6)

The relationship between the mass ratio and the mass fraction is

ζ +MR =
mp

m0

+
mf

m0

=
mp +mf

m0

=
m0

m0

= 1

ζ +MR = 1 (7)

It was shown in the previous lecture that the characteristic exhaust velocity can be repre-

sented as the following

c = Is · g0 =
F

ṁ
(8)

Using Eq. 2 and looking to solve for the velocity. yields the following

du =
F

m
dt

Using equations 3, 4, and 8 shown previously, we make several substitutions into the above

equation

du =
F

m
dt

=
cṁ

m
dt

=
c(mp/tp)

m0 −mp
t
tp

dt

By factoring out 1/m0 from the numerator and denominator yields the equation in terms of

the mass fraction
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du =
cζ/tp

1− ζt/tp
dt (9)

Integrating the above with boundary conditions u0 at t = 0 and u = up at t = tp yields the

following

up − u0 = −c ln(1− ζ)

Typically u0 is assumed to be zero and the velocity up is usually designated as the change

of velocity ∆v. With this knowledge the above equation becomes the following

∆v = c ln
1

1− ζ
(10)

= c ln
1

MR
(11)

= c ln
m0

mf

(12)

Great! We have a simplified equation for the change in velocity for our spacecraft in space.

What about when the spacecraft is on it’s way to space and is being affected by gravity and

atmospheric drag? These are great questions! Thanks for asking. Your welcome. The picture

below displays the many forces acting on a spacecraft before it reaches the zero-gravity and

zero drag we assumed at the beginning of the lecture.

The forces on a vehicle in flight

To help reduce the complexity of these equations we can make some assumptions about the
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direction of the thrust and that our rocket won’t have lift. This reduced figure can be seen

below

Vehicle in flight with assumptions

Examining the sum of the forces in the direction of flight yields

m · du
dt

= F −mgsinθ −D

Dividing both sides by mass and making Eq. 4 substitution then it will be reduced to the

following

dV

dt
=

Cζ/tp
1− ζt/tp

− g · sinθ −
1
2
CDρV

2A/m0

1− ζt/tp
Integrating both sides for the same boundary conditions used earlier (t = 0, u = u0 and

t = tp, u = up).

∆V = −C̄ ln(1− ζ)− (ḡ · sinθ) · tp −
BCDA

m0

(13)

Where the average characteristic exhaust velocity and gravity were found. The B in the last

term of the equation is the complicated integral below, that can be solved numerically or

graphically.
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B =

tpˆ

0

1
2
ρV 2

1− ζt/tp
dt (14)

Now that we have gone over the flight dynamics of a rocket lets look at the staging of rockets.

Some definitions to start us off: where mf is the final weight of the spacecraft, md is the

dead weight, and m0 is the starting mass of the rocket.

Payload fraction: λ

λ =
mpay

m0

=
mf −md

m0

Dead weight fraction δ

δ =
md

m0

=
mf −mpay

m0

Relationships:

m0

m0 −mp

=
m0

md +mpay

1

MR
=

1

δ + λ

Gravity free space for (N stages) would have us use Eq. 11 and making the substitution

from above. Then the change in velocity would be.

∆Vtot =
N∑
i=1

∆Vi =
N∑
i=1

Ci ln
1

δi + λi
=

N∑
i=1

Ci ln
1

1− ζi

Another helpful equation would be to write the overall payload fraction. This is demonstrated

below.

λ0 =
mpay

m01

=
N∏
i=1

λi =
mpay

m0N

· m0N

M0N−1

. . .
m03

m02

· mf1 −md1

m01

The goal now is to maximize the change in velocity for a given set of λ0, Ci, and δi with the

restriction that

λ0 =
N∏
i=1

λi (15)
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To do this, lets define the function F with Lagrange multiplier K on the payload restriction.

F =
N∑
i=1

Ci ln
1

δi + λi
+K

[
ln

(
N∏
i=1

λi

)
− lnλ0

]
Note that natural log was taken to both sides of the restriction then one term was subtracted

to the other side. This allows us to incorporate it into the F function. Taking the derivative

with respect to λi and setting it equal to zero.

∂F

∂λi
=
−Ci

δi + λi
+
K

λi
= 0 −→ λi =

δi
Ci/K − 1

Plugging this into Eq. 15 yields the following

N∏
i=1

λi = λ0 =

N∏
i=1

δi

N∏
i=1

Ci

K
− 1

The result is an N th order equation for K

N∏
i=1

(
Ci

K
− 1

)
=

1

λ0

N∏
i=1

δi (16)

Assuming constant C (Ci = C) Eq. 16 reduces to

(
C

K
− 1

)N

=
1

λ0

N∏
i=1

δi =
N∏
i=1

(
δi
λi

)
Then δi/λi must be constant and can be expressed as

λi = λ
1/N
0 · δi(

N∏
i=1

δi

)1/N

Adding to the assumptions that the dead weight ratio is constant, δi = δ then we have the

following

λi = λ
1/N
0 (17)

From taking the derivative and plugging it back into the Lagrange equation F we arrive to

the relationship above. Which demonstrates for a maximum ∆V that all the stages need to

have an equal payload ratio λ. Resulting in the final velocity equation
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∆Vtot = c ·
N∑
i=1

ln
1

δ + λi
= c ·N ln

1

δ + λ
1/N
0
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