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ABSTRACT
Many search algorithms have been proposed in the litera-
ture that differ from one another by the distance function
used. Typically, the objective is to minimize this distance
function. Based on the nature of the distance function, the
search algorithm varies. The question is: Can one develop a
generic search algorithm independent of the distance func-
tion? Another problem is to search for data whose function
values are in a given range. As the dataset is larger, linear
search methods become increasingly more expensive. Exist-
ing techniques are only applicable to specific scenarios, or
have some limitations. In this paper, we present an efficient
search algorithm and data structure that are applicable to
any algebraic distance function. We demonstrate the ap-
plicability of our approach in several search problems, e.g.,
k-nearest-neighbor, aggregate-nearest-neighbors, and

Categories and Subject Descriptors
H.3.4 [Search]: Index Query processing

1. INTRODUCTION
One of the common problems is to search for the data

element with the smallest function value. Consider the fol-
lowing motivating applications.
Example 1 - Determining a server location for clients:
The server location is chosen from a limited set of candidate
locations. The optimal server location has the minimum
total distance from the server to all the clients. When a
company has only one client, the solution is the location
nearest to that client. This problem is solved by a classic
kNN algorithm, e.g., [4]. However, if a company has more
than one client, the problem is out of the scope of the clas-
sic kNN algorithm, and the problem becomes an aggregate
nearest-neighbor search [?]. In this case, the search objective
is to minimize the aggregate distance function (sum or max-
imum) from the server locations to all the client locations,

i.e.,
√

(x− c11)2 + (y − c12)2+
√

(x− c21)2 + (y − c22)2, where
< c11, c12 > and < c21, c22 > are the locations of the
two clients, < x, y > is the location of a candidate server.
Tailored Group Nearest Neighbor (GNN) algorithms (e.g.,
see [?, ?]) exist to specifically address this scenario. The
question is: Instead of a tailored search algorithm per dis-
tance function, can we develop a generalized search algo-
rithm that works regardless of which distance function used?

Example 2 - Searching for speeding vehicles in
a given time interval and a given region: In this
scenario, the input contains the locations and correspond-

ing times of all vehicles. The objective speed function is:√
(x2−x1)2+(y2−y1)2

t2−t1
, where < x1, y1 > is the location at

Time t1, and < x2, y2 > is the location at Time t2. The
problem is to search for any vehicle whose objective func-
tion value is greater than the maximum speed limit. Some
indexing structures and algorithms e.g., the TB-Tree and
STB-Tree[?], are already designed specifically for this sce-
nario. Again, the question is: Can we formulate the above
query as a search problem with an objective function that
needs to fall in a given range and apply the same generalized
search algorithm instead of building tailored indexing struc-
tures and search algorithms when only the distance function
is what is different?

Example 3 - Customized recommendations: Inter-
net companies, e.g., Airbnb or Yelp provide search capa-
bilities for the items most “relevant” to their customers.
The relevant value of an item is often calculated by cer-
tain algebraic functions that take care of many factors, e.g.,
the distance to the customer and the number of starred re-
views. The weight value for each factor can be customized.
Therefore, the objective function can be expressed as follows:
W1 ∗

√
(x− c1)2 + (y − c2)2 +W2 ∗ z, where < x, y > is the

location of a candidate, z is its number of starred reviews,
< c1, c2 > is the location of a customer, and W1 and W2

are the customized weight values for that customer.
The three example applications above demonstrate the

need for search using different algebraic functions. Linearly
searching through the dataset and applying the objective
function for each data item is expensive. Indexing tech-
niques, e.g., the M-tree [1], speeds up the search by avoiding
this linear search. However, one limitation of the M-tree is
that it applies only to the metric space and depends heavily
on the triangular inequality.

This paper investigates the problem of searching datasets
given arbitrary algebraic distance functions, and proposes
a unified algorithm that has overcome limitations of tradi-
tional search techniques. More specifically, we focus on effi-
cient ways for answering the top-k and range query problems
when using generic algebraic functions. Distance functions
in metric and non-metric spaces are both supported. Given
the various objective functions, one important target is to
avoid as much as possible accessing data that does not con-
tribute to the query results.

The results of the conducted extensive experiment demon-
strate that the I/O requests are much less than linear search-
ing technique.

The rest of this paper proceeds as follows. Section 2
formally defines the generalized algebraic function search
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problem and provides some background material. Section 3
presents the generalized search algorithm and analyzes its
time complexity. Section 4 introduces an improved R*-tree
that enhances the performance of the proposed generalized
search algorithm. Section 5 presents experiment results.
Section 6 concludes the paper.

2. PRELIMINARIES
In this section, we define the algebraic search problem

formally. We overview some necessary background mate-
rial including spatial indexing and partial derivatives that
will facilitate the explanation of the proposed algorithm in
Section 3.

2.1 Generalized Search using Algebraic Dis-
tance Functions

Consider an n-dimensional dataset S that containsN points
(vectors), i.e., each vector data point, say x ∈ S, has n di-
mensions, x =< x1, ..., xi, ..., xn >, where i = 1, · · · , n.

An algebraic ranking function f(x) is defined on x for
all the three motivating examples in the introduction after
representing the variables in vector format.

f(x) =
√

(x1 − c11)2 + (x2 − c12)2+
√

(x1 − c21)2 + (x2 − c22)2

f(x)

√
(x2−x1)2+(x4−x3)2

x6−x5

f(x) = W1 ∗
√

(x1 − c1)2 + (x2 − c2)2 +W2 ∗ x3

The search problem is formalized in an algebraic form. In
this section, for simplicity, we only define the k-smallest and
range searches. Other search types, e.g., k-nearest search,
are discussed further in Section 3.

DEFINITION 1. (k-smallest search) Given an integer
number k and a dataset S, find the data points (vectors) in
S that have the k smallest function values of f(x). Formally,
the search result denoted as KS(S,f(x),k), is a set of vectors
that ∀o ∈ KS(S, f(x), k), ∀s ∈ S − KS(S, f(x), k), f(o) ≤
f(s)

DEFINITION 2. (range search) Given two values
LEFT and RIGHT, where LEFT ≤ RIGHT, and Dataset
S, find all data points (vectors) in S whose function values
are between LEFT and RIGHT. Formally, the search result,
denoted as RT (S, f(x), LEFT,RIGHT ), is a set of vectors
that ∀o ∈ RT (S, f(x), LEFT,RIGHT ), LEFT ≤ f(o) ≤
RIGHT .

2.2 Partial Derivative
To study the properties of generic algebraic functions,

their partial derivatives are used. Intuitively, a partial deriva-
tive represents how fast the function value increases (when
the derivative is positive) or decreases (when the derivative
is negative) on a given dimension (the derivative dimension).
The derivative to dimension xi is denoted by f ′xi

.

f ′xi
= limh−>0

f(x1,...,xi+h,...,xn)−f(x1,...,xi,...,xn)
h

,
∀i, 1 ≤ i ≤ n

COROLLARY 1 When f ′xi
≥ 0, f(x) is not decreasing

as xi increases; when f ′xi
≤ 0, f(x) is not increasing as xi

decreases.

When f ′x ≥ 0, ∀xi, xj ,∈ [MIN, MAX] such that MIN ≤
xi ≤ xj ≤MAX, then f(xi) ≤ f(xj), And vise versa.

For example, consider the partial derivatives of the objec-
tive function in Motivating Example 1.

f(x) =
√

(x1 − c11)2 + (x2 − c12)2+
√

(x1 − c21)2 + (x2 − c22)2

f ′x1
= x1−c11√

(x1−c11)2+(x2−c12)2
+ x1−c21√

(x1−c21)2+(x2−c22)2
, and

f ′x2
= x2−c12√

(x1−c11)2+(x2−c12)2
+ x2−c22√

(x1−c21)2+(x2−c22)2
.

Using the partial derivative formula, we calculate the value
ranges of derivatives in postfix notation (Reverse Polish no-
tation)[2]. These notations and the procedures to calculate
them are presented in the next section.

2.3 Value Range

DEFINITION 3. (Value Range:) The value range is a
set of pairs of values [vmin, vmax], where vmin ≤ vmax.
A value range of a derivative means that the value of
the derivative is inside the range designated by one of
the pairs. More specifically, let V R be a value range.
Then, V R = {[vmin1, vmax1], ..., [vmint, vmaxt]}, where
vmini ≤ vmaxi for 1 ≤ i ≤ t. The value range of f ′xi

means that ∃1 ≤ j ≤ t, vminj ≤ f ′xi
≤ vmaxj.

We devise a procedure to calculate the value range of
a derivative. Given a mathematical formula for a partial
derivative, and the value ranges of its variable, the proce-
dure is to use the postfix notation[2].

The procedure is similar to calculating a exact value of a
mathematical expression given exact variable values. How-
ever, the mathematical operators take different behaviors
when processing value range calculation.

Therefore, we redefine the mathematical operators for value
range calculation. Only the procedures of addition and mul-
tiplication operators (+ and *) are presented for simplicity,
as shown in Algorithm 1. Other operators, such as division
or sine, are not difficult to design.
Example:
Calculating the derivative of fx1,
f ′x1 = x1 ∗ (x1 + x2).

Initially, V R(x1) = {(−1, 2)}, V R(x2) = {(−1, 2)}.
Then, V R(x1 + x2) = {(−2, 4)}.
Finally, V R(f ′x1) = {(−4, 8)}.

Notice that the value range may get amplified, i.e., the
value range calculated may become enflated and wider than
the actual value of the expression. This is expected and does
not affect the proposed algorithm.

To avoid this amplification, we can try to simplify the for-
mula. The proposed algorithm only cares whether or not the
value range is non-negative or non-positive. For example,
consider the Euclidean distance function f(x) =

√
x21 + x22.

The derivative with respect to i.e., f ′x1
= x√

x2
1+x2

2

. However,

we use g′x1
= x instead as an equivalent function because√

x21 + x22 >= 0.

2.4 Multi-dimensional Index And MBR
To avoid accessing the entire dataset upon search, we use

a multi-dimensional index. Any spatial (multi-dimensinoal)
indexes, e.g., the R-Tree and its variants [3], or Quad-Tree



Algorithm 1 Operations for value range

1: procedure plus(VR1,VR2)
2: initialize VR
3: for pair( vmini, vmaxi) in VR1 do
4: for pair( vminj, vmaxj ) in VR2 do
5: VR.add( vmini+ vminj, vmaxi+ vmaxj)
6: end for
7: end for
8: return VR
9: end procedure

10: procedure multiply(VR1,VR2)
11: initialize VR
12: for pair( vmini, vmaxi) in VR1 do
13: for pair( vminj, vmaxj ) in VR2 do
14: vmin = min ( vmini * vminj, vmini * vmaxj,

vmaxi * vminj, vmaxi * vmaxj )
15: vmax = max ( vmini * vminj, vmini * vmaxj,

vmaxi * vminj, vmaxi * vmaxj )
16: VR.add( (vmin, vmax) )
17: end for
18: end for
19: return VR
20: end procedure

and its variants [?], exist in the literature and in systems.
The proposed search algorithm can use any multi-dimensional
index as long as the index has the following basic features:

1. The index groups the data points (vectors) using some
MBRs when the vectors are close to each other.

2. An MBR is stored in an index node along with links
to other child index nodes.

3. Build a top-down tree architecture where a parent node
points to its child nodes.

DEFINITION 4. (MBR) An MBR is defined by two
end points, S and T , of the rectangle’s major diagonal.
MBR = [S, T ], where
S =< s1, ..., si, ..., sn >,
T =< t1, ..., ti, ..., tn >,
∀x =< x1, ..., xi, ..., xn > under the node,
si ≤ xi ≤ ti for 1 ≤ i ≤ n.
An MBR has a minimum property that:
∀ε > 0, ∀1 ≤ i ≤ n,MBR′ = [S, T ′], T =<

t1, ..., ti − ε, · · · , tn >,∃x =< x1, ..., xi, ..., xn >
under the node that xi > t′i.

Similarly, ∀ε > 0, ∀1 ≤ i ≤ n,MBR′ =
[S′, T ], S′ =< s1, ..., si+ε, ..., sn >, ∃x =< x1, ..., xi, ..., xn >
under the node that xi < s′i.

There are four types of index nodes in a tree structured
index:

1) An Entry node stores the original data of a row (in-
cluding vectors and unindexed data). An entry node also
has an MBR even there is only one vector in it. Both the
two endpoints of the MBR are the exactly the vector stored
in the node.

2) A Leaf node stores its MBR and the links to the entry
nodes that are inside the MBR.

Figure 1: A multi-dimensional tree structured index

3) An Internal node stores its MBR and the links to its
children nodes (internal or leaf nodes).

4) A Root node is a special internal node that represents
the entire space and that has no parents. The root node
serves as the starting node to begin the search process at.

Figure 1 gives an example multi-dimensional tree struc-
ture index.

DEFINITION 5. (Monotonicity) An index node is
monotonic w.r.t. f(x) if and only if the node’s MBR is
monotonic w.r.t. f(x) in all the dimensions. For each di-
mension 1 ≤ i ≤ n of vector x, MBR = [S, T ] is mono-
tonic w.r.t. i if and only if any S ≤ x ≤ T , f(x) is derivable
w.r.t. xi, and V R(f ′xi

) ≤ 0or ≥ 0.

Definition 5 is a principal component of this paper. When
an index node, say P is monotonic, the algorithm can calcu-
late distance metrics and function measurements about the
entire node P without havinig to access any of the vectors
(data points) in P in case P is a leaf node, and without
having to access the child nodes of P in case P is a non-leaf
node. We discuss the monotonicity propery further in the
next section.

3. SEARCH ALGORITHM
In this section, we present details of k smallest search

algorithm. The k-nearest and range search algorithms are
also discussed briefly at the end of the section.

First, we present the metrics used by the search algorithm
to prune unnecessary branches during the search. Then, we
outline and discuss the pseudo code of the algorithm.

3.1 Metrics
As discussed in the previous section, an MBR represents

the domain of all data vectors under the corresponding node
of the MBR. To avoid accessing the original data vectors
(the entry nodes), two metrics of the node, MINVAL and
MINMAXVAL, explained below, are computed.

DEFINITION 6. (MINVAL) Let nd be an index node,
p be a data vector in an entry node, qi be the corners of
an MBR, 1 ≤ i ≤ 4, and chj be the children nodes of nd,
1 ≤ j ≤ c. The MINVAL (minimum value) of nd, denoted
by MINV AL(nd, f(x)), is computed as follows:

= f(p) if p is an entry node;

= mini=1,4(f(qi)) if p is monotonic;

= min1≤j≤c(MINV AL(chj , f(x))) otherwise.

(1)



DEFINITION 7. (MBR corners) The corners of an
MBR=(S,T) is a set of vectors, {x| < x1, ..., xi, ..., xn >
}, where 1 ≤ i ≤ n, xi = si or ti

The above definition is explained as follows. When nd is
an entry node, MINV AL is the value of the function f(x).
When the MBR of nd is monotonic w.r.t. f(x), MINV AL
is the minimum of all the corners of the MBR. If neither
of the two cases apply, then MINV AL is calculated as the
minimum of all the MINV ALs of the child nodes.

THEOREM 1 The function value of any vector under
Node nd is greater than or equal to MINV AL(nd, f(x)).

PROOF:
According to Definition 5, there are the following three

cases to consider. Case 1) If nd is an entry node, there is
only one vector p under nd. Hence, the function value under
nd is equal to f(p).
Case 2) When nd is monotonic w.r.t. f(x), this means that
when xi increases for ∀1 ≤ i ≤ n, f(x) consistently increases
or decreases over the area covered by the MBR of node nd.
Therefore, the minimum value for f(x) occurs at one of the
corners of the MBR and is smaller than or equal to the func-
tion value of any point inside the MBR. Thus, MINV AL
is actually the minimum over all function values of all the
corners of nd’s MBR.
Case 3) When Node nd is not monotonic, we need to apply
MINV AL’s definition recursively into nd child nodes. In
this case, MINV AL will be the minimum of all MINV ALs
of the child nodes. Hence, the function value of any data
vector under nd is still greater than or equal to MINV AL.
Thus, MINV AL of a node nd is the lower-bound of the
all the function evaluations of function f over all the data
vectors under the subtree rooted at nd.

Similarly, MINMAXVAL serves as an upper-bound that
guarantees that there exists at least one data vector in the
underlying subtree of which the function value is smaller
than or equal to MINMAXVAL.

In order to compute MINVAL and MINMAXVAL for all
the nodes in the entire tree, we make use of one of the prop-
erties of MBRs, namely that for each face of an MBR, there
is at least one data vector that touches that face, i.e., is in-
side the face – otherwise we can reduce the size of the MBR.
Therefore, when a non-entry node is monotonic w.r.t. f(x),
the proposed search algorithm calculates the maximum val-
ues of all the faces, and the minimum of these maximum
values is MINMAXV AL.

DEFINITION 8. (MINMAXVAL) Let nd be an in-
dex node, p be the data vector in an entry node, and
chj be the children nodes of nd, 1 ≤ j ≤ c. The
MINMAXVAL (mini-maximum value) of nd, denoted by
MINMAXV AL(nd, f(x)), can be calculated as follows:

= f(p), if p is an entry node;

= min(max(f(corners of MBR faces)), if MBR is monotonic;

= min1≤j≤c(MINMAXV AL(chj , f(x))) otherwise;

(2)

DEFINITION 9. (MBR faces) An MBR face is an (n-
1) dimensional MBR. There are 2n faces. Each face has
2n−1 corners, because there are 2n−1 combinations of choos-
ing S or T.

Formally, for the jth corner of ith face, corner q =<
q1, ..., qk, ...qn >, where qk=

sk, k = (i+ 1)/2 AND i mod 2 = 1;

tk, k = (i+ 1)/2 AND i mod 2 = 0;

sk or tk, depends the MBR corners;

(3)

where 1 ≤ i ≤ 2 ∗ n, 1 ≤ j ≤ 2n−1, 1 ≤ k ≤ n.

THEOREM 2 There exists at least one data vector un-
der node nd, whose function value is less than or equal to
MINMAXV AL(nd, f(x)).

PROOF:
According to Definition 8, there are the following three

cases to consider.
Case 1) If nd is an entry node, there is only one data tuple
p under nd. Hence, the function value of any data tuple
under nd is equal to f(p).
Case 2) According to the minimum property of MBR in
Definition 4, there exists at least one vector on each face
Also, according to Definition 5, when nd is monotonic w.r.t.
f(x), then f(x) is consistently increasing or decreasing over
all the MBR’s faces. Therefore, for any face, there exists a
vector whose function value is less than or equal to the max-
imum of MBR face corners’ function values. MINMAXVAL
is chosen from one of the MBR faces hence there is always
existing a vector whose the function value is less than or
equal to MINMAXVAL.
Case 3) When the node is not monotonic, the MINMAX-
VAL is a minimum of all MINMAXVALs of the child nodes.
Hence, there exists at least one vector under nd with the
function value less than or equal to the MINMAXVAL.

Note that there is a more efficient method for calculating
MINMAXVAL than the one implied by the definition. This
method is more efficient because it avoids iterating over all
possible corners of each face. There are 2n corners in an
MBR. However, each face has half of the MBR’s corners
(2n−1). To obtain the maximum value of the corners of each
face, sort all the corners based on their function values in
increasing order. Then, for each face, iterate in that order
and choose the first corner that belongs to the face. The
function value of that first corner is the maximum value of
corners for the face.

THEOREM 3 Given two index nodes nd1 and nd2, if
MINVAL(nd1,f(x))>MINMAXVAL(nd2,f(x)), then the vec-
tor with the smallest function value must be under node nd2.

3.2 Pseudo Code
In this section, we present the pseudo code of the k-

smallest search algorithm. We assume that the dataset has
at least k vectors so that edge checking is ignored.

As Algorithm 2, it has two main steps to get the top-
k tuples: to search for smallest value, then search for the
remaining smallest values.

Initially, an active list is initialized for R-Tree nodes. The
root node is put into the active list. Then recursively execute
the following process until reaching entry nodes.



Algorithm 2 k-smallest-search

1: procedure KSmallestSearch(k, root, f(x), T )
2: initlstStk,minStk, actLst
3: actLst.put(root)
4: SmallestSearch(k, f(x), T, actLst,minStk, lstStk)
5: RemainingSearch(k, f(x), T, actLst,minStk, lstStk)
6: return actLst
7: end procedure

1) Retrieve all child nodes of nodes in the active list;
2) Visit the child nodes and compute their MINVALs and

MINMAXVALs;
3) Based on the metrices and Theorem 3, prune some

nodes to avoid further access.
4) Since the pruned nodes may be used later, they are

pushed into a stack.
The details are shown in Algorithm 3.

Algorithm 3 smallest-search

1: procedure SmallestSearch(
k, f(x), T, actLst,minStk, lstStk)

2: while NonEntry(actLst.first()) do
3: inittmpLst
4: for node n in actLst do
5: for cn in node.children do
6: tmpLst.add(cn)
7: end for
8: end for
9: actLst.clear()

10: min MINMAX = min ( MINMAXVAL ( tm-
pLst.nodes, f(x), T ) )

11: for n in tmpLst do
12: if min MINMAX >= MINVAL ( n, f(x), T )

then
13: actLst.add(n)
14: tmpLst.del(n)
15: end if
16: end for
17: if tmpLst.size()>0) then
18: min MIN = min ( MINVAL ( tmpLst.nodes,

f(x), T ) )
19: minStk.push(min MIN)
20: lstStk.push(tmpLst)
21: end if
22: end while
23: end procedure

At the end of the first step, there might be more than one
vector that have the same smallest function value. Assume
m vectors, where 1 ≤ m ≤ k.

In the second step, the algorithm looks for the remaining
k-m vector with the smallest function values. The pruned
nodes are visited one by one, in order of popping from the
stack, until obtaining the remaining k-m vectors. We skip
the pseudo code for simplicity. It is similar to Algorithm 3,
and not difficult to implement.

This algorithm exploit the usage of index. The key idea
is to calculate MINVALs and MINMAXVALs for all index
nodes visited, only using their MBRs.

3.3 Other Search Query Types
Other types of algebraic function searches, such as range

and k-nearest searches are also supported.
Range search is much more straightforward than k-smallest

search. In addition to MINVAL, MAXVAL is defined sim-
ilarly. It guarantees that every function value of vectors in
the nodes is less than or equal to MAXVAL. The result to
range search query is also retrieved by visiting nodes in ac-
tive list from top to bottom. In the meantime of visiting,
prune nodes that are out of the queried range until all nodes
are in the range.

DEFINITION 10. (k-nearest search) Given a target
value T and an integer number k, search for the k tuples out
of a dataset DS, with the function values of f(x) nearest to
T. Formally, the search result denoted as KN(DS,f(x),T,k),
is a set of tuples that ∀o ∈ KN(DS, f(x), T, k),∀s ∈ DS −
KN(DS, f(x), T, k), |f(o)− T | ≤ |f(s)− T |

THEOREM 4 A k-nearest search problem can be con-
verted into a k-smallest search problem.

PROOF Construct another function g(x)=|f(x)-T|, then
the k smallest search for g(x) is equivalent to the k nearest
search for f(x) with the target value T.

Theorem 4 shows that we can use the k smallest search
algorithm to solve the k nearest search problem. However, a
function expression in a form of g(x) = |f(x)−T | is not easy
and efficient to apply the solution. Because when computing
the metrics for an index node, the algorithm requires the
formulas of partial derivatives. Since g(x) = |f(x) − T | =√

(f(x)− T )2, the partial derivatives obtained through this
formula might be very complex.

To overcome this difficulty, two different metrics for the
k nearest search, MINDIST and MINMAXDIST can be de-
signed to replace MINVAL and MINMAXVAL. MINDIST is
the lower bound to replace MINVAL, and MINMAXDIST is
the upper bound in place of MINMAXVAL. They are more
efficient to compute than MINVAL and MINMAXVAL. The
definitions are trivial and can be written similarly.

3.4 Algorithm Performance
The algorithm complexity depends on the quality of the

index structure and the nature of the algebraic function ap-
plied. In best case, the algorithm would exploit the usage of
index, visiting very few internal nodes to locate the target
entry nodes. However in worst case, the algorithm would
iterate every nodes as linear scanning.

When a function is not derivable, or the MBRs are not
monotonic, the algorithm performs closed to the worst case.
For any Weierstrass function[5], the algorithm always per-
forms at the worst case because this type of function is not
derivative at all.

Most algebraic functions in real life are derivable. How-
ever, some algebraic function, such as application example
2, performs badly in some dataset even the function is deriv-
able. Because whether the MBRs are monotonic or not heav-
ily depends on the dataset used, and the multi-dimensional
index applied.

One of the well known data structure for multi-dimensional
data is R*-tree. It provides balanced structure and splitting
rectangles with very little overlap. It performs well for lots



of common algebraic functions. However there are still some
potential improvements.

In next section, we investigate the bad performace issue
of the R*-Tree and propose improvements on the R*-Tree
to make it works better for some difficult case like speed
function.

4. IMPROVED R*-TREE
R*-Tree[?] is one of most popular data structure for multi-

dimensional data. It is developed from R-Tree[3] as a mem-
ber of the R-Tree family.

The original R-Tree is an natural extension of B-Tree.
Similarly, it provides insert/delete/search operations. When
inserting a new item to a R-Tree, choosing a node to insert
and how to split a full node are two critical problems. The
two problems lead researchers to develop different members
of R-Tree family. Among those members, R*-Tree is proved
to be one of the best members providing good quality of
choosing and splitting nodes.

4.1 Root Causes of Bad Performance
When applying R*-Tree to our algorithm, most of the

algebraic functions perform well. The algorithm can save at
least 80% of disk page accessing in most cases. However,
some kind of algebraic functions are not able to avoid too
many disk accessing as expected. Such as the speed function
in motivating application example 2:

f(x) =

√
(x1−x2)2+(x3−x4)2

x5−x6
.

One of the root causes is 1
x5−x6

. That leads the algo-
rithms of choosing inserting nodes and splitting nodes per-
form badly.

Assume that
t11 <= x6 <= t12,
t21 <= x5 <= t22,
t01 <= x5 − x6 <= t02,
What if t01 < 0 and t02 > 0? Then 1

x5−x6
reaches + inf

and − inf. Hence the MBR with this value range is not
monotonic.

To avoid this from happening, we conduct the following.
Let t01 <= 0, t02 <= 0 or t01 >= 0, t02 >= 0, then
t12 >= t11 >= t22 >= t21 or
t22 >= t21 >= t12 >= t11.
Intuitively, an MBR is better not across line x5 = x6 as

shown in Figure 2.
The R*-Tree and other implementation of R-Trees, do not

take care the factor that whether or not a MBR should across
a line. Consequently, lots of MBRs are not monotonic.

Another root cause is that, every time splitting a R*-Tree
node, it only affect one dimension. As more dimensions are
used, it is less possible that the algorithm would split one
specific critical axis. However, some axis’s might be more
promising to make a monotonic MBR, than other axis’s.

To address those issues, we propose two improvements on
R*-Tree. One improvement is on choosing subtree to insert
new items, and another is on choosing split axis and index.

The final root cause we discover is that some algebraic
functions have stronger locality than some others. A func-
tion with weak locality may require some distribution in the
dataset to have very good performance. A strong locality
means that the vectors closed to each other always have
some closed function values, and the vectors far way may
have very different function values.

Figure 2: an MBR is better not across line t2 = t1

For example, we consider f(x) = x1∗x2 has stronger local-
ity than f(x) = sin(x1 ∗ x2). Therefore, algebraic function
f(x) = sin(x1 ∗ x2) only has good performance when the
dataset is very dense. Instead f(x) = sin(x1 ∗ x2) doesn’t
have that request.

4.2 Choosing Subtree
When choosing a subtree for inserting a new item, the

original R*-Tree[?] takes into account factors including over-
lap enlargement, area enlargement and rectangle area. Those
factors are beneficial for choosing a subtree that leads to
little overlap and area enlargement. However, they might
also lead a index node changing from monotonic to non-
monotonic for certain functions.

Therefore we propose that choosing subtree also needs to
consider monotones change as an extra factor.

After inserting an item to a subtree node, the subtree
node’s MBR might have three cases of changing monotones:

1) Change from non-monotonic to monotonic;
2) Keep being monotonic;
3) Keep being non-monotonic;
4) Change from monotonic to non-monotonic;
Above is the preferred order for choosing a subtee. 1) >

2) > 3) > 4). The improving algorithm would choose the
subtree in that above order. Then resolve the tier using the
original R*-Tree’s algorithm.

4.3 Choosing Split Axis and Index
When splitting a index node, a splitting axis and a split-

ting index need to be chosen. The original R*-Tree algo-
rithm has a issue of causing some MBR changing from mono-
tonic to non-monotonic.

Similar to the improvement on choosing subtree for in-
serting, we propose that the monotones is also considered.
For each splitting axis and index, the number of child nodes
that are monotonic is recorded. Then choosing the axis and
index having the maximum number. Also, we resolve the
tier using the original R*-Tree algorithm.

4.4 Visualized Comparison
We conduct an experiment to visually compare the origi-

nal R*-Tree to the improved R*-Tree. The experiment uses
the speed monitoring function, which has six variables (di-



Figure 3: The original R*-Tree in x5(horizontal) and
x6(vertical) dimensions. Many rectangles cross the dash red
line x5 = x6

.

Figure 4: The improved R*-Tree has few rectangles across
line x5 = x6, which leaves an empty line.

Figure 5: Page access for customized recommendation prob-
lem via different algorithms

mensions). 3000 randomly generated elements are inserted
into both trees with the same order.

The results are shown in Figure 3 and Figure 4. We can
intuitively observe the rectangles in dimension x5 and x6.
The original R*-Tree put lots of rectangles across the line
x5 = x6, which let them be non-monotonic. On the other
hand, the improved R*-Tree avoid doing that as much as
possible, hence Figure 4 has an empty line along x5 = x6.

The visual results give us confidence that the improved
R*-Tree can work better than the original one. Conse-
quently, we conduct benchmark tests for comparing their
performance.

5. PERFORMANCE EXPERIMENTS
In this section, we study the performance of the proposed

data structure and algorithm. Different algebraic functions
are applied in different dataset. The number of disk page
access is used as the performance metric.

5.1 Customized Recommendation
Algebraic function:
f(x) = W1 ∗

√
(x1 − c1)2 + (x2 − c2)2 +W2 ∗ x3

Dataset:
In this case we use the yelp academic data?? as business

locations. Each business location contains a pair of longi-
tude and latitude, and also the number of reviews serving
as x3. We manually set up different < c1, c2 > as customer
locations, and the weight values for distance and factor x3.
The customer location should not be very far away from
all candidates. As long as the location is reasonable, the
algorithm is always efficient.

Result:
In Figure 5, the page access grows much slower as the

dataset size increases, when using the new algorithm(yellow
curve), compared to linear scanning technique( blue curve).

5.2 Server Location
Algebraic function:
f(x) =

√
(x1 − c11)2 + (x2 − c12)2+

√
(x1 − c21)2 + (x2 − c22)2

Dataset:
In this case we still use Yelp academic data[?] as candidate

locations for server. Since it is the exact same dataset, we
can use the exact same index built for Section 5.1.

Also, we manually set up two locations as clients. Those
constant can also affect the performance. The two client



Figure 6: Page access for server location problem via differ-
ent algorithms

Figure 7: Page access for speed monitoring problem via dif-
ferent algorithms

locations should not be very far away from all candidates.
As long as the locations are reasonable, the algorithm is
always efficient. Also the number of clients can be vary.

Result:
In Figure 6, the page access grows significantly slower us-

ing the proposed technique(yellow curve), compared to lin-
ear scanning technique(blue curve), as the dataset size in-
creases.

Note that we are using the exact same dataset and index
as we use for server location problem. The index is built
with more dimensions (x1, x2, x3) than the dimensions that
are queried(x1 and x2). This suggests that one index can be
reused in different algebraic functions. It exploits the usage
of index and enables more functionality of database system.

5.3 Speed Monitoring
Algebraic function:

f(x) =

√
(x3−x1)2+(x4−x2)2

x6−x5

Dataset 1:
In this case we use BerlinMOD data[?] for vehicles trips.

The dataset contains the start and end of locations and time.
Result:
In Figure 7, the page access grows mostly the same via

different techniques. However the improved R*-Tree(gray
curve) works better than original R*-Tree(yellow curve) and
linear scanning(blue curve).

Section 4.1 discussed the root causes of the bad perfor-
mance. One of the cause the nature of the algebraic func-
tion. This function has very week locality.

Figure 8: Page access for speed monitoring problem via dif-
ferent algorithms using random start and end time

Another cause is the dataset distribution. The speeds are
mostly in a small range and in a particular pattern. The
start and end time are in a sequential order, which would
make the rectangles too large. We verify this cause using a
different dataset.

Dataset 2:
In this dataset, we still use BerlinMon, however we change

the start and end time. Instead, we use the values of x1 and
x4 and start and end times. This would break the x5 and
x6 into more random data.
Result:
In Figure 8, our proposed algorithm with improved R*-

Tree performs better than with original R*-Tree. And they
both work better than linear scanning. This verify that the
data distribution can affect the performance.

6. CONCLUSION
In this paper, we presented the new algorithm for generic

algebraic function search. We analyzed the performance and
complexity of the algorithm and proposed improvement on
data structure. Our extensive experimental results shows
the efficiency and availability of the techniques.

Essentially, our new technique is a natural extension of
spatial index and classic kNN algorithm. This extension is
enabling the database indexing to be more powerful in real-
world problems.
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