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Chapter 1

Introduction

1.1 Fourier transform

We collect here some conventions and useful results about the Fourier transform:

ĝ(ξ) :=
1√
2π

∫
R
g(t)eitξ dt, g(t) :=

1√
2π

∫
R
ĝ(ξ)e−itξ dξ. (1.1)

In the following F−→ denotes the direct transform and F
−1

−→ denotes the inverse transform.

Basic identities For L2 real functions f, g:

f ∗ g F−→
√

2πf̂ ĝ, fg
F−→ 1√

2π
f̂ ∗ ĝ, 〈f, g〉L2(R) =

〈
f̂ , ĝ
〉
L2(C)

Poisson summation formula Let δ be the Dirac distribution and T > 0 a sampling
step, then we have the following Fourier transform pair:∑

n∈Z
δ (· − nT )

F−→
√

2π

T

∑
k∈Z

δ

(
·+ 2πk

T

)
(1.2)

Sampling operator Let ST be the sampling operator with a step T applying on a smooth
test function g such that in the sense of distribution

ST g(t) =
∑
n∈Z

g(nT )δ(t− nT ) =

(
g ∗
∑
n∈Z

δ (· − nT )

)
(t) (1.3)

and its Fourier transform reads, using the Poisson summation formula,

ŜT g(ξ) =
1

T

∑
k∈Z

ĝ

(
ξ +

2πk

T

)
(1.4)

Using (1.4) we can easily establish the following. Let ψ, f be real smooth test functions.
Then it holds in the sense of distribution∑

n∈Z
ψ(nT )f(t− nT ) =

1

T

∫
R

∑
n∈Z

ψ̂

(
ξ +

2πn

T

)
f̂(ξ)e−itξ dξ (1.5)
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Fourier transform of |t|α We recall the following result of Fourier transform of a homo-
geneous distribution (see e.g. Chapter 2.3 of Generalized Functions, Vol 1, Gel’fand):

Lemma 1.1.1. The Fourier transform of the function f(t) = |t|α is, in the sense of distri-
bution, when α /∈ Z:

f̂(ξ) =
2Γ(α+ 1)√

2π
cos
(π

2
(α+ 1)

)
|ξ|−(α+1) (1.6)

when α = n for n nonnegative odd integer:

f̂(ξ) =
2in+1

√
2π

n! |ξ|−(n+1) (1.7)
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Chapter 2

fBm and related processes

We review in this chapter the fractional Brownian motion and related processes by focusing
on some important properties such as their representation and covariance structure.

Notations Let (X(t))t∈R+
be a real-valued time-continuous zero-mean Gaussian process.

Its autocovariance function is denoted by

γX(t, s) := E (X(t)X(s)) (2.1)

while its autocorrelation function is

ρX(t, s) :=
γX(t, s)√

γX(t, t)γX(s, s)
(2.2)

The increment process of X with step δ > 0 is defined as

∆δX(t) := X(t+ δ)−X(t) (2.3)

Sometimes in order to highlight a time-discrete process (or a sequence), we write X[n] and
accordingly γX [n,m] its autocovariance function. This could be the case for a sampled
process (X(nδ))n.

Self-similar process A process is said self-similar for a parameter H ∈ (0, 1) if for any
a > 0 it holds

(X(at))t
L
= aH (X(t))t (2.4)

which means (X(at))t and aH (X(t))t have the same finite-dimensional probability distri-
bution. In particular this implies X(0) = 0 almost surely. The parameter H is called the
Hurst exponent.

Long memory process A stationary processX is said to have long memory or long-range
dependence if the autocorrelation (or autocovariance) sequence is not summable, i.e.

+∞∑
n=0

|ρX(n)| = +∞ (2.5)

This holds in particular if ρX(n) decays slowly as |n|−α for some 0 ≤ α ≤ 1.
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2.1 fBm and its increments

A stochastic process is said H-sssi if it is self-similar with exponent H and its increment
process is stationary whatever the step δ. We call fractional Brownian motion

(
B(H)(t)

)
t∈R+

a non-trivial centered H-sssi Gaussian process.

Proposition 2.1.1. The covariance function of fBm B(H) is given by

γB(H)(t, s) := E
(
B(H)(t)B(H)(s)

)
=
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
(2.6)

where σ2 = E
(∣∣B(H)(1)

∣∣2) is the variance.

Proof. Assume without loss of generality that σ = 1. By the stationarity of the increments
and the self-similarity, it holds for any t > 0:

E
(

∆δB
(H)(t)2

)
= E

(
B(H)(δ)2

)
= δ2H .

This implies that for t ≥ s > 0

E
(∣∣∣B(H)(t)−B(H)(s)

∣∣∣2) = s2H E
(

∆ t−s
s
B(H)(1)2

)
= (t− s)2H .

On the other hand this is just t2H + s2H − 2γB(H)(t, s), which allows to establish (2.6).

The fBm is unique in the sense that all H-sssi Gaussian processes share the same finite-
dimensional distribution, i.e. the same covariance function (2.6), up to some multiplicative
constant. A fBm is almost surely continuous (or sample-continuous) and nowhere differen-
tiable, moreover it is H-Hölder continuous. These facts can be established by studying the
increment process ∆δB

(H) which has the autocovariance function

E
(

∆δB
(H)(t)∆δB

(H)(s)
)

=
σ2

2

(
|t− s+ δ|2H + |t− s− δ|2H − 2 |t− s|2H

)
(2.7)

In particular E
(∣∣B(H)(t)−B(H)(s)

∣∣2) = σ2 |t− s|2H . For a general introduction of fBm,
see e.g. [Doukhan et al., 2002, Samorodnitsky and Taqqu, 1994] and the references therein.

Fractional Gaussian noise We call fractional Gaussian noise (fGn) the stationary pro-
cess of increment

X
(H)
δ (t) := B(H)(t+ δ)−B(H)(t) = ∆δB

(H)(t), (2.8)

and denote its covariance sequence by γ
X

(H)
δ

(t) =
(
σδH

)2
γ0(t/δ) with

γ0(t) := ρ
X

(H)
δ

(t) =
1

2

(
|t+ 1|2H + |t− 1|2H − 2 |t|2H

)
(2.9)

It can be shown that the autocorrelation function γ0 is strictly positive if 1/2 < H < 1
(called persistant) and strictly negative if 0 < H < 1/2 (called anti-persistant), and decays
as H(2H − 1) |t|2H−2. By (2.5) this shows in the persistant case the fGn is a process of
long memory. Note that we could equivalently use a causal filter in the definition (2.8),
i.e. X(H)

δ (t) := B(H)(t)−B(H)(t− δ), which gives the same autocovariance function.
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2.1.1 Spectrum analysis

For a stationary process X the power spectrum density (psd) function PX is a continuous
and positive function defined on [0, 2π) such that the identity

γX(n) =

∫ 2π

0
PX(ω)e−inω dω (2.10)

holds for any n ∈ Z. Using Poisson summation formula one can establish the psd of fGn

P
X

(H)
δ

(ω) ∝ (1− cosω)
∑
n∈Z
|2πn+ ω|−(2H+1)

which behaves as ω1−2H around the origin. Therefore it is continuous at the origin when
0 < H < 1/2 and blows up when 1/2 < H < 1. More generally there exists an equivalence
between

• the slow decay of the autocovariance sequence at infinity, e.g. γX(n) ' |n|−α for some
0 < α < 1, which is typical to the long memory process [Hosking, 1996];

• the power law behavior of the psd at low frequencies, e.g. PX(ω) ' |ω|−(1−α), which
is typical to the so-called 1/f process [Abry et al., 1995, Wornell, 1990, Wornell, 1993,
Shusterman and Feder, 1996, Keshner, 1982].

For a rigourous statement of this equivalence see e.g. Theorem 15 of [Samorodnitsky, 2002].

Wavelet based pseudo spectrum of fBm

–To Do–Periodogram, Welch...

2.2 Integral representation of fBm

The fBm admits different but equivalent integral representations. We state here the moving
average and harmonizable integral representations which are well studied in the literature
and can be easily generalized to the multifractional case. Hereafter we denote by Γ(·) the
Gamma function and (x)+ := max{0, x} and (x)− := −min{0, x}. We recall first some
basic facts about stochastic integrals.

2.2.1 Stochastic integral

Let (B(t))t∈R+
be the standard Brownian motion, and {ψn}n∈N an orthonormal basis of

L2(R). We define respectively the stochastic integrals w.r.t. the Brownian measure dB and
the complex Brownian measure d̂B:∫

R
f(x) dB(x) =

∑
n

〈f, ψn〉Zn,
∫
R
g(ξ) d̂B(ξ) =

∑
n

〈
g, ψ̂n

〉
Zn (2.11)
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for real- and complex-valued L2(R) function f and g respectively, and {Zn}n∈N is a fixed
collection of i.i.d. standard Gaussian random variables. The definitions above are indepen-
dent of the choices of {ψn}n∈N and {Zn}n∈N since the equality is in the sense of probability
distribution. It is easy to see that

f̂ = g a.e. ⇐⇒
∫
R
f(x) dB(x) =

∫
R
g(ξ) d̂B(ξ) a.s. (2.12)

and we have the following Parseval identities:

E
(∫

R
f1(x) dB(x)

∫
R
f2(x) dB(x)

)
=

∫
R
f1(x)f2(x) dx

E
(∫

R
g1(ξ) d̂B(ξ)

∫
R
g2(ξ) d̂B(ξ)

)
=

∫
R
g1(ξ)g2(ξ) dξ

(2.13)

Kernels of representation for fBm

A sufficient condition of the kernel giving an integral representation of fBm is as follows.

Proposition 2.2.1. Let K(t, ·) be a real-valued L2(R) function satisfying

• there exists H > 0 such that for any a > 0 it holds K(at, ax) = aH−1/2K(t, x),

• for any δ > 0, the following quantity is a function of t− s:∫
R

(K(t+ δ, x)−K(t, x)) (K(s+ δ, x)−K(s, x)) dx. (2.14)

Then the stochastic process defined by

B(H)(t) =

∫
R
K(t, x) dB(x) (2.15)

is a fBm with Hurst exponent H.

Proof. We first show that the stochastic process B(H)(t) is H-self-similar, which means(
B(H)(at)

)
t∈R+

and
(
aHB(H)(t)

)
t∈R+

follow the same finite-dimensional (multivariate nor-
mal) distribution. By noting that {

√
aψn(a·)}n is an orthonormal basis of L2(R), this follows

easily from the definition (2.11) and from the Parseval identity (2.13) which implies that
E
(
B(H)(at)B(H)(as)

)
= a2H E

(
B(H)(t)B(H)(s)

)
. On the other hand, the stationarity of

the increments comes directly from (2.16) and the Parseval identity. Therefore the process
B(H) is a fBm.

A parallel result exists for the complex-valued Hermitian kernel:

Proposition 2.2.2. Let K̃(t, ·) be a complex-valued L2(R) function satisfying

• K̃(t, ξ) = K̃(t,−ξ)

• there exists H > 0 such that for any a > 0 it holds K̃(at, a−1ξ) = aH+1/2K̃(t, ξ),
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• for any δ > 0, the following quantity is a function of t− s:∫
R

(
K̃(t+ δ, ξ)− K̃(t, ξ)

)(
K̃(s+ δ, ξ)− K̃(s, ξ)

)
dξ. (2.16)

Then the stochastic process defined by

B(H)(t) =

∫
R
K̃(t, ξ) d̂B(ξ) (2.17)

is a real-valued fBm with Hurst exponent H.

Proof. Being Hermitian means K̃(t, ·) is the Fourier transform of some real-valued function
K(t, ·) ∈ L2(R). Using (2.12) this implies that the stochastic process B(H)(t) is a real-valued
fBm since it can be checked K(t, ·) fulfills the two conditions of Proposition 2.2.1.

2.2.2 Moving average representation

A fBm admits the following moving average representation

B(H)(t) = cH

∫
R

(t− x)
H−1/2
+ − (−x)

H−1/2
+ dB(x) (2.18)

where the normalizing constant is chosen as

cH =

(
Γ(2H + 1) sin(πH)

Γ(H + 1/2)2

)1/2

, (2.19)

such that E
(∣∣B(H)(1)

∣∣2) = 1. The averaging kernel

K+(t, x;H) := (t− x)
H−1/2
+ − (−x)

H−1/2
+ (2.20)

is a L2 function for all t and satisfies the conditions in Proposition 2.2.1. Note that the
power function here is interpreted as

(x)
H−1/2
+ =

{
xH−1/2, if x > 0

0 if x ≤ 0
(2.21)

When H = 1/2 the kernel (2.20) becomes simply the indicator function 1[0, t)(x). Another
possibility of moving average representation is

B(H)(t) = cH

∫
R

(t− x)
H−1/2
− − (−x)

H−1/2
− dB(x) (2.22)

with the same normalizing constant as (2.19). Remark that the kernel K+(t, x;H) is causal
since K+(t, x;H) = 0 for all x ≥ t ≥ 0 and the kernel

K−(t, x;H) := (t− x)
H−1/2
− − (−x)

H−1/2
− (2.23)
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is anti-causal. More generally, any kernel of type

K(a+,a−) := a+K+ + a−K− (2.24)

for some constants a+, a− defines a fBm up to some multiplicative constant. For example
the case a+ = 1, a− = 1 corresponds to the kernel

K+(t, x;H) +K−(t, x;H) = |t− x|H−1/2 − |x|H−1/2 (2.25)

and the case a+ = 1, a− = −1 corresponds to the kernel

K+(t, x;H)−K−(t, x;H) = sign (t− x) |t− x|H−1/2 − sign (−x) |x|H−1/2 (2.26)

where sign (·) denotes the sign function. Both kernels decay as O(|x|H−3/2) at infinity hence
are L2 functions.

A consequence of Lemma 1.1.1 is the following:

Proposition 2.2.3. For all t ∈ R, H ∈ (0, 1), the Fourier transforms of the kernel
K+(t, ·;H) and K−(t, ·;H) read

K̂±(t, ξ;H) = αH
eitξ − 1

|ξ|H+1/2
e∓i

π
2 (H+ 1

2) sign(ξ) (2.27)

where αH := Γ(H + 1/2)/
√

2π.

Denoting the constants β+ = 2αH cos
((
H + 1

2

)
π
2

)
and β− = 2αH sin

((
H + 1

2

)
π
2

)
, we

define therefore the following kernels

K+ := (K+ +K−)/β+, K− := (K+ −K−)/β−. (2.28)

Then using Proposition 2.2.3 we obtain their Fourier transform for all H ∈ (0, 1):

K̂+(t, ξ;H) =
eitξ − 1

|ξ|H+1/2
, K̂−(t, ξ;H) =

eitξ − 1

iξ |ξ|H−1/2
(2.29)

Remark 2.2.1. For the special case H = 1/2 we obtain the expressions of these kernels by
taking the limit as H → 1/2, namely

K+(t, x) =

√
2

π
ln

(
|x|
|t− x|

)
, K−(t, x) = sign (t− x)− sign (−x) , (2.30)

in fact the first one comes from the observation(
K+ +K−

β+

)
=

(
K+ +K−
H − 1/2

)(
H − 1/2

β+

)
.
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2.2.3 Harmonizable representation

A fBm admits the harmonizable representation:

B(H)(t) = ĉH

∫
R

eitξ − 1

iξ |ξ|H−1/2
d̂B(ξ) (2.31)

where the kernel fulfills the conditions in Proposition 2.2.2 and the normalizing constant is
given by

ĉH =

(
Γ(2H + 1) sin(πH)

2π

)1/2

, (2.32)

such that E
(
B(H)(1)2

)
= 1. Another possibility is

B(H)(t) = ĉH

∫
R

eitξ − 1

|ξ|H+1/2
d̂B(ξ) (2.33)

with the same normalizing constant as (2.32). The corresponding real kernel for (2.31) and
(2.33) are given in (2.29).

The harmonizable representation allows simple computation of the covariance function
which makes it easier to manipulate when generalized to the multifractional case.

2.3 Structure of covariance

A fBm
(
B(H)(t)

)
t∈R+

with fixed Hurst exponent H has the covariance function given by
(2.6) (up to some multiplicative constant) and this being independent of the choice of the
kernel in the integral representation. We want to know if the same thing can be said for
the more general covariance function E

(
B(H)(t)B(H′)(t′)

)
. In order to give a meaning to

this expression, we write B(t;H) = B(H)(t) and interpret (B(t;H))t∈R+,H∈(0,1) as a two
dimensional random field which admits the expansion

B(t;H) =
∑
n

〈
K(a+,a−)(t, ·;H), ψn(·)

〉
Zn (2.34)

with a fixed orthonormal basis {ψn}n∈N and a collection of i.i.d. standard Gaussian random
variables {Zn}n∈N. Then the question is if different kernels define the same random field
(up to some multiplicative constant). We state here the results of [Stoev and Taqqu, 2006]
which will be used later to establish the covariance function of a multifractional Brownian
motion.

From Proposition 2.2.3 we know that the kernel K(a+,a−)(t, ·;H) of fBm has the Fourier
transform

K̂(a+,a−)(t, ξ;H) = α(H)
eitξ − 1

|ξ|H+1/2
U(a+,a−)(ξ;H) (2.35)
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where α(H) = Γ(H + 1/2)/
√

2π and U(a+,a−) is defined by

U(a+,a−)(ξ;H) := a+e
−i sign(ξ)(H+1/2)π

2 + a−e
i sign(ξ)(H+1/2)π

2 . (2.36)

It is easy to show for U(a+,a−) that its modulus is a constant independent of ξ and its
argument equals to sign (ξ) θ(H) with

θ(H) := Arg
(
a+e

−i(H+1/2)π
2 + a−e

i(H+1/2)π
2

)
∈ [0, 2π), (2.37)

hence we can write U(a+,a−)(ξ;H) =
∣∣U(a+,a−)(1;H)

∣∣ ei sign(ξ)θ(H), with the modulus fulfills∣∣U(a+,a−)(1;H)
∣∣2 = a2

+ + a2
− − 2a+a− sin(πH) (2.38)

Theorem 2.3.1 ([Stoev and Taqqu, 2006]). Let (B(t;H))t∈R,H∈(0,1) be given by (2.34) with
the kernel K(a+,a−). Let H̄ := (H +H ′)/2 and ∆θ(H,H

′) := θ(H)− θ(H ′), and define the
function

h(u) = h(u;H,H ′) := cos
(
∆θ(H,H

′)− sign (u)πH̄
)
. (2.39)

and the constant

C(H,H ′) := π−1Γ(H + 1/2)Γ(H ′ + 1/2)
∣∣U(a+,a−)(1;H)

∣∣ ∣∣U(a+,a−)(1;H ′)
∣∣ . (2.40)

Then when H̄ 6= 1/2 the covariance function has the expression

E
(
B(t;H)B(t′;H ′)

)
=C(H,H ′)

Γ(2− 2H̄)

2H̄(1− 2H̄)
(2.41)

×
(
h(t) |t|2H̄ + h(−t′)

∣∣t′∣∣2H̄ − h(t− t′)
∣∣t− t′∣∣2H̄) ,

and when H̄ = 1/2 the covariance function is the limit of the above expression as H̄ → 1/2:

E
(
B(t;H)B(t′;H ′)

)
=C(H,H ′)

(
cos(∆θ(H,H

′))
π

2
(|t|+

∣∣t′∣∣− ∣∣t− t′∣∣)− (2.42)

sin(∆θ(H,H
′))(t ln |t| − t′ ln

∣∣t′∣∣− (t− t′) ln
∣∣t− t′∣∣)) .

Remark 2.3.1. For H fixed, all kernels K(a+,a−) are equivalent up to some multiplicative
constant that depends only on a+, a−, H. In fact the covariance function in this case reads

E (B(t;H)B(s;H)) =

∣∣U(a+,a−)(1;H)
∣∣2 Γ(H + 1/2)2

Γ(2H + 1) sin(πH)

1

2

(
|t|2H + |s|2H − |t− s|2H

)
(2.43)

For H non fixed, both C(H,H ′) and h(u) will depend on a+, a− and the covariance function
E (B(t;H)B(s;H ′)) generally can not be factorized into a kernel-dependent part and a
kernel-independent part, as in (2.43). This means the random fields (B(t;H))t∈R+,H∈(0,1)

represented by the different kernels K(a+,a−) are not equivalent in general.
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2.3.1 Equivalent kernels with simplified covariance structure

Below are some special kernels that define the same random field:

• a+ = a0, a− = a0, and H 6= 1/2 with

a0(H) =
(Γ(2H + 1) sin(πH))1/2

2 cos((H + 1/2)π/2)Γ(H + 1/2)
(2.44)

which corresponds to the kernel ĉHK+ with ĉH and K+ being given by (2.32) and
(2.28) respectively. For H = 1/2 the kernel has to be modified as in (2.28).

• a+ = a0, a− = −a0, with

a0(H) =
(Γ(2H + 1) sin(πH))1/2

2 sin((H + 1/2)π/2)Γ(H + 1/2)
(2.45)

which corresponds to the kernel ĉHK− with ĉH and K− being given by (2.32) and
(2.28) respectively.

• a+ = a0, a− = 0, or a+ = 0, a− = a0 with

a0(H) =
(Γ(2H + 1) sin(πH))1/2

Γ(H + 1/2)
(2.46)

which corresponds respectively to the kernel cHK+ and cHK− with cH being given by
(2.19).

Using Theorem 2.3.1 it can be checked easily that in any of these cases the covariance
function E (B(t;H)B(t′;H ′)) has the same expression, namely

E
(
B(t;H)B(t′;H ′)

)
= D(H,H ′)

1

2

(
|t|2H̄ +

∣∣t′∣∣2H̄ − ∣∣t− t′∣∣2H̄) (2.47)

with the constant defined by

D(H,H ′) :=

√
Γ(2H + 1)Γ(2H ′ + 1) sin(πH) sin(πH ′)

Γ(2H̄ + 1) sin(πH̄)
, (2.48)

and clearly D(H,H) = 1.

Lemma 2.3.2. D defined by (2.48) is a smooth function on (0, 1) × (0, 1) such that 0 <
D(H,H ′) ≤ 1. Moreover its first-order partial derivatives evaluated on the diagonal vanish,
i.e.

∂1D(H,H) = ∂2D(H,H) = 0 (2.49)

Proof. The smoothness and the positiveness comes from the that of the Gamma and the
sinus function. Using Cauchy-Schwartz inequality and by (2.47), it holds for any t > 0

∣∣E (B(t;H)B(t;H ′)
)∣∣ = D(H,H ′) |t|H+H′ ≤

√
E
(
|B(t;H)|2

)√
E
(
|B(t;H ′)|2

)
= |t|H+H′

13



which implies D(H,H ′) ≤ 1. Now let F (H) = log(Γ(2H + 1)) + log(sin(πH)) and define
L(H,H ′) by

L(H,H ′) := logD(H,H ′) =
F (H) + F (H ′)

2
− F

(
H +H ′

2

)
then (2.49) follows by observing that the partial derivatives of L evaluated on the diagonal
vanish.

2.4 Fractional ARIMA process

Fractional autoregressive integrated moving average (FARIMA or ARFIMA) process is a well
known discrete time process having similar power law and long memory behavior as the fBm.
Let L be the lag operator such that Lx(n) = x(n−1). The operator of fractional differential
(finite difference) is defined as analogy of the integer case (see for example [Hosking, 1984])

∇d := (1− L)d =

∞∑
k=0

d(d− 1) · · · (d− k + 1)

k!
(−L)k =

∞∑
k=0

ckL
k

where the coefficient ck is expressed using Gamma function as

ck = (−1)k
Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
=

Γ(k − d)

Γ(k + 1)Γ(−d)
∼ k−(d+1)

Γ(−d)
as k →∞, (2.50)

and it is easy to check that (1− L)dL = L(1− L)d.

Definition 2.4.1 (FARIMA(p, d, q) process). Let {ε(n)}n∈Z be a process of Gaussian noise
with ε(n) ∼ N (0, 1) being i.i.d Gaussian variables. Given the autoregressive kernel {φi}i=1...p

and the moving average kernel {θj}j=1...q, a fractional ARIMA process S(p, d, q) = {S(n)}n∈Z
is defined by the equation:

(1−
p∑
i=1

φiL
i)∇dS(n) = (1 +

q∑
j=1

θjL
j)ε(n), for n = 1, 2 . . . (2.51)

The fractional integrated process is the process S(0, d, 0) and it can be defined through
the z-transformation as

S(z) =

(
1

1− z−1

)d
ε(z) (2.52)

For |d| < 1/2 this is a stationary process and has the autocovariance function

γS(k) =


Γ(1− 2d)

Γ(1− d)2
, if k = 0

γSd(k − 1)
k − 1 + d

k − d
, if k = 1, 2 . . .

(2.53)

However for |d| > 1/2 the process S(0, d, 0) is not stationary. This can be seen from the
z-transformation (2.52) for d ∈ (1/2, 3/2) in particular, since(

1− z−1
)−d

=
(
1− z−1

)−1 (
1− z−1

)−(d−1)
,

therefore the process can be expressed as the partial sum (or cumulative sum) of a stationary
process. The case d > 3/2 can be reduced to d ∈ (1/2, 3/2) by iterating partial sums.
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2.5 Multifractional Brownian motion

We generalize fBm by admitting the Hurst exponent to evovle with time. Let (B(t;H))t∈R+,H∈(0,1)

be the random field described in the section 2.3.1 (using any of the mentioned kernel and the
associated normalization constant). We assume in the following that the Hurst exponent H
as a function of time is Hölder continuous with exponent η, satisfying

0 < inf
t
H(t) ≤ sup

t
H(t) < η (2.54)

Given H we call a multifractional Brownian motion (mBm) the centered Gaussian process
(W (H)(t))t∈R+ such that W (H)(t) = B(t;H(t)) for any t ≥ 0. We present here and in
the Section2.6 some properties of mBm by studying its autocovariance function, see also
[Peltier and Véhel, 1995, Balança, 2014, Ayache et al., 2000] and the references therein.

Processes of increment The increment process of W (H) is

∆δW
(H)(t) := B(t+ δ;H(t+ δ))−B(t;H(t)) (2.55)

i.e. the increment is in both t and the Hurst function. Similarly we define

∆δB
(H(t))(t) := B(t+ δ;H(t))−B(t;H(t)) (2.56)

which is the increment process of a fBm with the constant Hurst exponent H = H(t) at
time t.

Asymptotic equivalence of processes of increment For two processes (Xδ(t))t and
(Yδ(t))t depending on the parameter δ we write

(Xδ(t))t
L∼ (Yδ(t))t, as δ → 0 (2.57)

if all finite-dimensional distributions of Xδ and Yδ are asymptotically equivalent. Similarly
we write

(Xδ(t))t
L−→ (X(t))t, as δ → 0. (2.58)

if Xδ converges in all finite-dimensional distributions to X.

2.5.1 Structure of covariance

We establish here the asymptotic autocovariance function of the increment process of mBm
and relate it to that of the fBm. These results will be useful for both the simulation
and the estimation of (multiple-) fBm trajectory presented later. Unlike the approach in
[Jin et al., 2018], here we do not assume any any particular representation kernel.

In the following we denote by H̄ = (H(t) +H(s))/2 for any given t, s. Using (2.47) we
obtain easily the autocovariance function of the mBm

E
(
W (H)(t)W (H)(s)

)
= D(H(t), H(s))

1

2

(
|t|2H̄ + |s|2H̄ − |t− s|2H̄

)
(2.59)
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and that of the process ∆δB
(H(·)) which is defined in (2.56)

E
(

∆δB
(H(t))(t)∆δB

(H(s))(s)
)

= D(H(t), H(s))×
1

2

(
|t− s+ δ|2H̄ + |t− s− δ|2H̄ − 2 |t− s|2H̄

)
(2.60)

Remark that (2.60) is δ2H(t) for t = s and of order δ2 for t 6= s. On the other hand the
computation of the autocovariance of the increment process (2.55) is more involved, we
establish here an asymptotic result.

Proposition 2.5.1. Under the assumption (2.54) and for any fixed t it holds, as δ → 0

E
((

∆δW
(H)(t)

)2
)

= E
((

∆δB
(H(t))(t)

)2
)

+ o
(
δ1+η

)
(2.61)

Moreover, if η > 1 it holds for fixed s 6= t:

E
(

∆δW
(H)(t)∆δW

(H)(s)
)

= E
(

∆δB
(H(t))(t)∆δB

(H(s))(s)
)

+ o
(
δ1+η

)
(2.62)

In particular, the sample path of a mBm is almost surely pointwise Hölder continuous with
the local exponent at t being H(t).

Proof. (Sketch of proof) Recalling the definition of increment (2.55), the LHS of (2.62) is the
sum of four terms expressed using (2.47), which involves only D and exponential functions.
The proof is then essentially based on asymptotic expansions in δ for the exponential func-
tions and in H(t+ δ)−H(t) = O(δη) for the functions D. For the case t 6= s the expansion
is carried for all functions to the first order, except that the expansion for the exponential
functions where the base involves t− s is in δ of the exponent only. For the case t = s the
expansion is carried for the function D to the second order, using the property (2.49). The
Hölder continuity follows by taking t = s in (2.62).

The following result is a direct consequence of Proposition 2.5.1 and will be useful later
for the simulation of mBm.

Corollary 2.5.2. The process (δ−H(t)∆δW
(H)(t))t is asymptotically equivalent to the process

(δ−H(t)∆δB
(H(·))(t))t, i.e.(

W (H)(t+ δ)−W (H)(t)

δH(t)

)
t

L∼

(
B(H(t))(t+ δ)−B(H(t))(t)

δH(t)

)
t

(2.63)

as δ → 0.

Using the same technique of asymptotic expansion, we can establish a result similar to
Proposition 2.5.1.

Proposition 2.5.3. Let t be fixed, it holds for any u, v as δ → 0:

E
((
W (H)(t+ δu)−W (H)(t)

)(
W (H)(t+ δv)−W (H)(t)

))
=

δ2H(t) 1

2

(
|u|2H(t) + |v|2H(t) − |u− v|2H(t)

)
+ o

(
δ2η
)

(2.64)

16



Proof. Omitted.

Note that the leading term in (2.64) is just the autocovariance of the fBm
(
B(H(t))(δu)

)
u
,

therefore for a fixed t it holds as δ → 0:(
W (H)(t+ δu)−W (H)(t)

δH(t)

)
u

L−→
(
B(H(t))(u)

)
u

(2.65)

In other words, the tangent process of a mBm at t is a fBm with Hurst exponent H(t).

2.6 Wavelet analysis of covariance

Wavelet is an important tool for the analysis of fBm. Here we invest the autocovariance
function of the wavelet filtered process, which is the foundation of the wavelet-based pa-
rameter estimation techniques developped later. For similar results see [Flandrin, 1992,
Abry et al., 1995, Abry et al., 2003, Abry, 2003, Jin et al., 2018, Roueff and Von Sachs, 2011]
and the references therein.

Choice of wavelet Let ψ ∈ L2(R) be a wavelet function with compact support on [0, 1]
and ‖ψ‖L2 = 1. By Paley-Wiener Theorem the compact support implies the Fourier trans-
form ψ̂ is a smooth function and∣∣∣ψ̂(ω)

∣∣∣ . (1 + |ω|)−N , ∀N ∈ N when ω →∞ (2.66)

We require also ψ has Q vanishing moments, which means∫
R
ψ(t)tk dt = 0, for k = 0 . . . Q− 1, and

∫
R
ψ(t)tQ dt 6= 0. (2.67)

This is equivalent to say

ψ̂(k)(0) = 0 for k = 0 . . . Q− 1, or ψ̂(ω) ' ωQ around 0. (2.68)

In particular this implies for any 0 ≤ p < Q the generalized condition of admissibility:

Cψ(p) :=

∫
R

∣∣∣ψ̂(ω)
∣∣∣2

|ω|1+2p dω < +∞ (2.69)

More generally, we introduce the following function depending on a parameter ρ > 0:

Cψρ (τ, p) :=

∫
R

ψ̂(
√
ρω)ψ̂(

√
ρ−1ω)

∗

|ω|1+2p e−iωτ dω (2.70)

so that Cψ(p) = Cψ1 (0, p), and the admissibility condition above implies the bound∣∣∣Cψρ (τ, p)
∣∣∣ < +∞, uniformly in τ, ρ. (2.71)

One can also prove for real-valued wavelet that Cψρ is also a real-valued function which decays
in τ as O

(
|τ |−2(Q−p)

)
when |τ | tends to infinity, and it holds Cψρ (τ, p) = Cψ1/ρ(−τ, p), in

particular Cψρ (0, p) = Cψ1/ρ(0, p).
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Wavelet transform We denote the wavelet function at the scale a > 0 by

ψa(t) :=
1√
a
ψ

(
t

a

)
(2.72)

such that ψa is supported on [0, a] and ‖ψa‖L2 = 1. For a second order process (X(t))t such
that E

(∣∣X(t)2
∣∣) has a polynomial growth in t, the coefficient of analysis with ψa is well

defined as

Wψ
X(t; a) =Wψa

X (t) :=

∫
R
X(t+ u)ψa(u) du (2.73)

which is also called this the continuous wavelet transform (CWT)1. In case of the dyadic
scaling a = 2−j it is called the stationary wavelet transform. We call the discrete wavelet
transform if the decimation t = 2−jn is applied in addition. In the latter case we denote the
coefficient of scale j ∈ Z and position n ∈ Z by

dX [n; j] = djX [n] :=Wψ
X(2−jn; 2−j) (2.74)

Not that the transform in (2.73) is anti-causal if ψ is supported on t ≥ 0. A causal
transform can be obtained by translating the support of ψ to t ≤ 0.

2.6.1 Structure of covariance for fBm

Note that if X is a standard fBm with Hurst exponent H, the property (2.4) gives

(Wψa
X (at))t

L
= aH+1/2(Wψ

X(t))t. (2.75)

This implies immediately the covariance structure

E
(
Wψa

X (at)Wψa
X (at′)

)
= a2H+1 E

(
Wψ

X(t)Wψ
X(t′)

)
(2.76)

where the RHS actually depends only on t − t′. In case of discrete wavelet transform this
expression becomes

E
(
djX [k]djX [k′]

)
= 2−j(2H+1) E

(
d0
X [k]d0

X [k′]
)
. (2.77)

In the following we generalize these results to the multifractional setting.

2.6.2 Structure of covariance for mBm

We will consider here the process defined by X(t) = σ(t)W (H)(t) which is the standard
mBm multiplied by a non-negative volatility function σ ∈ C1. Recall η the Hölder exponent
of the Hurst function fulfilling (2.54). Then under the assumption

Q > sup
t
H(t) (2.78)

1Here and after we follow the convention that the wavelet transform (continuous or discrete) is not a
convolution but a correlation, i.e. X(t+ u) rather than X(t− u) in the integrand.
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we can establish the asymptotic covariance structure of the wavelet coefficients

E
(
Wψa

X (t)Wψa′
X (t′)

)
=

∫ a′

0

∫ a

0
σ(t+ s)σ(t′ + s′)C(t+ s, t′ + s′)ψa(s)ψa′(s

′) ds ds′ (2.79)

for small but proportional scale parameters a and a′. Recall that C here is the covariance
function (2.59), i.e.

C(t, t′) = D(H(t), H(t′))
1

2

(
|t|2H̄(t,t′) +

∣∣t′∣∣2H̄(t,t′) −
∣∣t− t′∣∣2H̄(t,t′)

)
with D being given by (2.48) and H̄(t, t′) := (H(t) +H(t′))/2.

Proposition 2.6.1. Suppose a′ = ρa for some fixed ρ > 0 and t = ak + t0, t
′ = ak′ + t0 for

some fixed k, k′ and t0 6= 0. Under the assumption (2.78) and the condition of admissibility
(2.69) the following statements hold as a→ 0:

1. The covariance of the wavelet coefficients is

E
(
Wψa

X (t)Wψa′
X (t′)

)
= Aψρ

(
k − k′
√
ρ
,H(t0)

)
σ(t0)2 (

√
ρa)2H(t0)+1 + o(a2H(t0)+1)

(2.80)

where the function Aψρ is

Aψρ (τ,H) := Γ(2H + 1) sin(πH)Cψρ (τ,H) (2.81)

2. The variance of the wavelet coefficients is

E
(∣∣∣Wψa

X (t0)
∣∣∣2) = Aψ(H(t0))σ(t0)2a2H(t0)+1 + o(a2H(t0)+1) (2.82)

where the function Aψ is

Aψ(H) = Γ(2H + 1) sin(πH)Cψ(H). (2.83)

In particular, if H and σ are both time-independent constants then (2.80) and (2.82)
hold for any a > 0 without the small o terms.

Remark 2.6.1. Ignoring the small o term, (2.80) shows that Wψa
X for fixed a is a stationary

process.

Proof. We use the following asymptotic expansions for 0 < s < a, 0 < s′ < a′:

• on σ around t0

σ(t+ s)σ(t′ + s′) = σ(t0)2 + σ(t0)σ′(t0)(s+ s′ + a(k + k′)) +O(a2) (2.84)

• on D around H(t0), H(t0)

D(H(t+ s), H(t′ + s′)) = 1 +O(∆2 + ∆′2) = 1 +O(a2η) (2.85)

where ∆ = H(t+ s)−H(t0) = O(aη) and ∆′ = H(t′ + s′)−H(t0) = O(aη).
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• On the function g(t) := |t|2H(t0) ln |t| around t0. Since t0 6= 0, the asymptotic

g(t+ s) = g(t0) + g′(t0)(s+ ak) +O(a2)

holds for any value of H(t0). In particular g(a) = o(aH(t0)).

• On the function |t+ s|H(t+s)+H(t′+s′) as

|t+ s|H(t+s)+H(t′+s′) = |t+ s|2H(t0) + (∆ + ∆′)g(t+ s) +O(∆2 + ∆′2).

• By writing C(t, t′) = D(H(t), H(t′))A(t, t′)/2, then

A(t+ s, t′ + s′) = |t+ s|2H(t0)︸ ︷︷ ︸
A1

+
∣∣t′ + s′

∣∣2H(t0)︸ ︷︷ ︸
A2

−
∣∣a(k − k′) + s− s′

∣∣2H(t0)︸ ︷︷ ︸
A3

+

(∆ + ∆′)(2g(t0) + g′(t0)(s+ s′ + a(k + k′)) + g(s− s′ + a(k − k′)))︸ ︷︷ ︸
A4=A4,1+A4,2+A4,3

+

O(a2+η + a2η) (2.86)

where the big O term is also o(aη+1), and A4,1 = (∆ + ∆′)2g(t0) and so on. Note that
A4,1 = O(aη), A4,2 = O(aη+1) and A4,3 = o(aη+H(t0)).

The expression (2.79) now can be analyzed (essentially using Cauchy-Schwartz inequality
and the vanishing moments of ψ) term-by-term by injecting the asymptotic expansions of
σ, D and A:

• Terms involving σ(t0)2, as well as

– A1 +A2: these terms vanish.
– A3: this term is

−σ(t0)2

2

∫
R

∫
R

∣∣a(k − k′) + s− s′
∣∣2H(t0)

ψa(s)ψa′(s
′) dsds′ (2.87)

which equals to the leading term of (2.80) by applying Parseval’s identity and
the Fourier transform of Lemma 1.1.1. Note that (2.70) is well defined thanks to
the assumption (2.78) and the condition of admissibility (2.69). In particular it
holds

∣∣∣Cψρ (τ,H)
∣∣∣ ≤ Cψ1 (0, H) for any τ,H.

– A4,1 +A4,2: these terms vanish.
– A4,3: this term is o(aη+H(t0)+1).

• Terms involving σ(t0)σ′(t0)(s+ ak + s′ + ak′), as well as

– A1 +A2: these terms vanish.
– A3: this term is O(a2H(t0)+2).
– A4,1: this term vanishes.
– A4,2: this term is O(aη+3).
– A4,3: this term is o(aη+H(t0)+2).

Besides (2.87), all these terms are o(a2H(t0)+1). On the other hand, it is easy to see that the
three big O terms in (2.84), (2.85) and (2.86) always result in o(a2H(t0)+1). This concludes
the proof.
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2.7 Discretization and fractional Wavelet noise

2.7.1 Fractional Wavelet Noise

Let (ψ[n])n∈Z be a real high-pass filter satisfying∑
n∈Z

ψ[n] = 0 (2.88)

and the coefficients decay sufficiently fast with |n| such that the associated Fourier series

ψ̂d(ω) :=
∑
n

ψ[n]einω (2.89)

is well defined. We call fractional Wavelet noise (fWn) the stationary process defined by

V ψ
δ (t) :=

∑
n

ψ[n]B(H)(t+ nδ) (2.90)

which is the filtration of a pure fBm by (ψ[n])n∈Z at sampling step δ. The filter is said
causal if its support is on negative indices, i.e. ψ[n] = 0 for any n > 0. Similarly it is said
anti-causal if its support is on positive indices, and non-causal (or centered) if its support
is centered around 0. This is somehow contrary to the usual convention (i.e. the filter is
causal if supported on positive indices) due to the definition of (2.90), see also the footnote
about the CWT in section 2.6.

Covariance structure

Given two real high-pass filters ψ,ψ′ satisfying the conditions mentionned above, define the
sequence

a[k] = −
∑
n

ψ[n+ k]ψ′[n] = −ψ ∗ ψ̃′[k] (2.91)

where ψ̃′[n] = ψ′[−n] and ∗ denotes the discrete convolution. We introduce the covariance
function

γψ,ψ
′
(t) =

1

2

∑
k∈Z

a[k] |t+ k|2H (2.92)

The covariance structure of fWn can be easily established using definition. For this let ψ,ψ′

be two high pass filters satisfying (2.88), then for any t, t′ ∈ R+ it holds

E
(
V ψ
δ (t)V ψ′

δ (t′)
)

= −σ
2

2

∑
n

∑
n′

ψ[n]ψ′[n′]
∣∣t− t′ + (n− n′)δ

∣∣2H
=
σ2

2

∑
k∈Z

a[k]
∣∣t− t′ + kδ

∣∣2H =
(
σδH

)2
γψ,ψ

′
(
t− t′

δ

)
(2.93)

Note that the covariance function (2.92) can be rewritten as, by means of Fourier trans-
form

γψ,ψ
′
(t) = CH

∫
R

ψ̂d(ω)ψ̂′d(ω)∗

|ω|2H+1
e−itω dω (2.94)

with some constant CH depending on H only.
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Wavelet filter bank

Let ψ be a wavelet with Q vanishing moments satisfying the admissible condition (2.69)
Cψ(H) < +∞. The discrete filter at the scale j is taken as

ψj [n] := ψj(n) =
1√
j
ψ

(
n

j

)
(2.95)

and we assume for the moment that the condition (2.88) is also fulfilled. Its Fourier series
is expressed as, using Poisson summation formula

(̂ψj)d(ω) =
√
j
∑
n

ψ̂ (ωj + 2πnj)

Let i, j ∈ N be two scales with the ratio ρ = j/i being fixed. Denote by γψi,ψj the
covariance function (2.92) with the discrete filters ψi, ψj . Then one can establish easily that
as i, j increases the covariance function at t = 0 is asymptotically

γψi,ψj (0) ' Aψρ (0, H)
(√

ij
)2H+1

(2.96)

where Aψρ is defined as in (2.81). In particular the variance of the wavelet coefficient at a
large scale i is asymptotically

E
(∣∣V i

δ (t)
∣∣2) ' Aψ(H)

(
σδH

)2
i2H+1 (2.97)

where Aψ is defined as in (2.83). In the next section we generalize this result to the multi-
fBm setting.

Single scale fGn As an example of fWn consider the filter

ψj = [−1, 0, . . . 0︸ ︷︷ ︸
j zeros

, 1] (2.98)

then taking ψ′ = ψj in (2.91) yields

a[k] =


1, l = ±(j + 1)

−2, l = 0

0, otherwise

and (2.93) is the autocovariance function of fGn at the scale j.

2.7.2 Discretization of CWT and High-frequency limit

Let δ be the sampling step of observation, at the high-frequency limit the wavelet transform
(2.73) can be approximated using quadrature as

Wψa
X (t) ' δ√

a

∑
n∈Z

X(nδ)ψ

(
nδ − t
a

)
(2.99)
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On compactly supported ψ this is a finite-length sum. The fine scales a � δ contain
essentially aliasing due to the sampling of X hence we should consider only a ≥ δ. We
can choose a = jδ, t = mδ and define the discrete version of CWT on a discrete trajectory
(X[n])n∈Z with X[n] := X(nδ) to be

w
ψj
X [m] = wψX [m; j] :=

1√
j

∑
n∈Z

X[n]ψ

(
n−m
j

)
(2.100)

where m ∈ Z, j ∈ N. Note that a factor
√
δ is dropped in (2.99) such that the sampling step

δ does not appear formaly in the definition of DCWT.
As a corollary we can establish a discrete version of the asymptotic covariance structure

at the high-frequency limit.

Proposition 2.7.1. Suppose ψ̂ has p-th integrable derivative. For a fixed t0 let l0 = bt0/δc.
Let m,n ∈ Z and i, j ∈ N be fixed and ρ = j/i. Then under the same assumptions as in
Proposition 2.6.1 the following statements hold as δ → 0:

1. The covariance of the wavelet coefficients is

E
(
wψiX [l0 +m]w

ψj
X [l0 + n]

)
= Aψρ

(
m− n√

ij
,H(t0)

)(
σ(t0)δH(t0)

)2 (√
ij
)2H(t0)+1

+O((
√
ij)−p) + o(δ2H(t0)+1).

(2.101)

2. The variance of the coefficients is

E
(∣∣∣wψiX [l0]

∣∣∣2) = Aψ(H(t0))
(
σ(t0)δH(t0)

)2
i2H(t0)+1 +O(i−p)

+ o(δ2H(t0)+1). (2.102)

where the functions Aψρ , Aψ above are the same as in Proposition 2.6.1.

Sketch of proof. The discretization in (2.100) will introduce aliasing in the Fourier domain
and the aliasing error can be controlled using Paley-Wiener theory. Define a1 = iδ, a2 = jδ
and t1 = t0 + mδ, t2 = t0 + nδ. Now in (2.80) replacing a, t by a1, t1 and a′, t′ by a2, t2
respectively and using the fact that at t0 the mBm is H(t0)-Hölder continuous to bound the
error of discretization, we obtain the desired result.

Remark 2.7.1. The presence of the term δ2H(t0) in (2.101) and (2.102) seems a suprise since
the discretization (2.100) does not depend formly on the sampling step. In fact δ is “hidden”
in the discrete trajectory of (X[n])n∈Z due to the self-similarity of the process X.

It is easy to establish the correlation of the wavelet coefficients

Cor
(
wψiX [l0 +m]w

ψj
X [l0 + n]

)
'
(
Aψ(H(t0))

)−1
Aψρ

(
m− n√

ij
,H(t0)

)
(2.103)

and the decay of the correlation is determined by that of the funtion Aψρ .
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2.7.3 B-Spline wavelet transform

As an example of discretization we consider here the B-Spline wavelet. Recall the Haar
wavelet defined on [0, 1)

ψ(0)(t) :=


1, if t ∈ [0, 1/2),

−1, if t ∈ [1/2, 1),

0, otherwise.
(2.104)

and the discrete Haar transform at even scales

wψ
(0)

X [m; 2j] =
1√
2j

m+j−1∑
n=m

X[n]−
m+2j−1∑
n=m+j

X[n]

 (2.105)

which corresponds to an anti-causal convolution. We emphasize that only even scale trans-
form is defined due to the half-closed intervals convention adopted in (2.104). More generally
we can take the q-fold auto-convolution of ψ(0) as the mother wavelet

ψ(q)(t) := ψ(0) ∗ · · · ∗ ψ(0)︸ ︷︷ ︸
q−fold convolutions

(t) (2.106)

which has q + 1 vanishing moments, and equivalently expressed in the frequency domain as

ψ̂(q)(ω) =
(√

2π
)q (
−
(
1− eiω/2

)2
√

2πiω

)q+1

(2.107)

It is easy to check that for any j ∈ N it holds

ψ(1)

(
m

2j

)
=

(
1

2j

)∑
n∈Z

ψ(0)

(
n

2j

)
ψ(0)

(
m− n

2j

)
, for any m ∈ Z (2.108)

and more generally the computation of discretized CWT (2.100) with ψ(q) can be realized
easily thanks to the following result

Proposition 2.7.2. Let j ∈ N, then it holds

ψ(q)

(
m

2j

)
=

(
1

2j

)q (
ψ(0)

(
·

2j

)
∗ · · · ∗ ψ(0)

(
·

2j

))
︸ ︷︷ ︸

q−fold discrete convolutions

(m) , for any m ∈ Z, (2.109)

where ψ(0)(·/2j) denotes the discrete sequence
(
ψ(0)(n/2j)

)
n∈Z, and the discrete convolution

is defined as in (2.108).

Proof. –To Do–

Discrete filter We define the FIR B-Spline filter of order q at scale 2j to be the finite-
length sequence (ψ(q)(m/2j))m∈Z in (2.109), which satisfies the condition (2.88) by con-
struction.
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Numerical evaluation of Cψρ (τ,H)

In practice the real-valued function Cψρ (τ,H) is evaluated by means of numerical integration
and one may run into problems of unstability with a naive implementation due to the
(removable) singularities of the integrand. Let sinc(t) := sin(πt)/πt and let ψ(q−1) be the
B-Spline wavelet defined originally in (2.106) having q vanishing moments and supported
on [0, q]. Recall that we defined above the wavelet transform (both continuous and discrete)
as a correlation (equivalent to a convolution using the time-reversed ψ), and in practice one
may translate the wavelet filter to obtain causal or anti-causal transform. This will affect
the expression of Cψρ (τ,H), in particular:

• for non-causal transform or centered wavelet ψ(t) = ψ(q−1)(t+q/2) which has support
on [−q/2, q/2], the corresponding function is

Cψρ (τ,H) :=
1

π16q

∫ +∞

0

(
sinc

(
ω
√
ρ/(4π)

)
sinc

(
ω/(
√
ρ4π)

))2q
|ω|2H+1−2q

cos (ωτ) dω. (2.110)

• for anti-causal transform or non-centered wavelet ψ(t) = ψ(q−1)(t) which has support
on [0, q], the corresponding function is given by a translation of the expression above

Cψρ (τ − q(√ρ− 1/
√
ρ)/2, H) (2.111)

• similarly for causal transform or the left-shifted wavelet ψ(t) = ψ(q−1)(t + q) which
has support on [−q, 0], the corresponding function is

Cψρ (τ + q(
√
ρ− 1/

√
ρ)/2, H) (2.112)

25



Chapter 3

Simulation of fBm and related process

We study in this chapter the numerical simulation of a stochastic process on some time
interval [Tmin, Tmax]. For a fBm we can do this on the interval [0, 1], then by stationarity
of increments and by self-similarity the samples can be shifted and rescaled to adapt to any
desired interval. We will consider the regular sampling grid of size N

GN :=

{
(Tmax − Tmin)×

(
0,

1

N
,

2

N
, . . . ,

N − 1

N

)
+ Tmin

}
In fact, it is only on the regular grid that the covariance matrix of a stationary process has
the Toeplitz structure.

A sampling method of a stochastic process is called exact if the samples follow the
finite dimensional probability distribution of the stochastic process when restricted on the
sampling grid. For a centered Gaussian process this amounts to sample a multivariate
Gaussian distribution of some prescribed covariance matrix.

3.1 Overview of sampling methods

For a sampling step δ, the discrete trajectory of a fBm
{
B(H)(kδ)

}
k=1...N

follow a centered
multivariate Gaussian distribution with covariance matrix

(ΓB(H))n,m = γB(H)(nδ,mδ), (3.1)

which is symmetric and definite positive. Here we intentionally excluded the sample B(H)(0)

to avoid having a singular covariance matrix. Recall the time-discrete fGn
(
X

(H)
δ [k]

)
k=0...N−1

is defined as

X
(H)
δ [k] := B(H)(kδ + δ)−B(H)(kδ)

and its covariance matrix reads(
Γ
X

(H)
δ

)
n,m

= γ
X

(H)
δ

((n−m)δ) = (σδH)2γ0(n−m) (3.2)

which is symmetric and positive definite Toeplitz matrix. The covariance function γ
X

(H)
δ

was introduced in (2.9).
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Relation between covariance matrices Using the fact

B(H)(nδ) =

n−1∑
k=0

X
(H)
δ [k]

we prove the following identity

γB(H)(nδ,mδ) =

n−1∑
k=0

m−1∑
l=0

γ
X

(H)
δ

((k − l)δ) (3.3)

which can be rewritten in a matrix form as

ΓB(H) = LΓ
X

(H)
δ

L> = δ2HLΓ
X

(H)
1

L> (3.4)

where L is the lower triangular matrix that all entries (including the diagonal) equals to 1
and it computes the cumulative sum when applied to a vector.

Cholesky method

The simplest exact method for a Gaussian process (stationary or not) consists in computing
the Cholesky decomposition of the covariance matrix ΓB(H) = W>W . Then applying W
on a N -dimensional Gaussian vector ε ∼ N (0, σ2I) gives the random vector x = Wε with
the desired covariance matrix Γ. This method actually applies for any Gaussian process
on any type of sampling grid and has the time complexity O(N3), which is prohibitive in
practice when N > 104 (on a laptop with 2.8GHz Intel i7 CPU and 16GB memory).

Exact methods

Generally speaking a stationary process is easier to simulate than a non-stationary one
thanks to its Toeplitz structure. On the other hand, we can first simulate a fGn process
then compute the cumulative sum to obtain a sample trajectory of the corresponding fBm
process, and this method will be exact as long as the simulation of the fGn is so, as shown
by the identity (3.4). This strategy is used in particular by the circulant embedding method,
the Hosking method and the CRMD method that we present later.

Sequential sampling of a Gaussian process

Let X,Y be two random variables with the joint p.d.f. dPX,Y (x, y). In order to draw a
sample (x, y) from the joint distribution, one can draw first a sample x from the distribution
dPX (·) then a sample y from the conditional distribution dPY |X (·|x). For the Gaussian
random vectors this property can also be verified using the formulae of conditional distri-
bution. Let x ∼ N (µx,Σx) and y ∼ N (µy,Σy) be two Gaussian random vectors. The
random vector (x,y) has the same distribution as (x, ŷ), where

ŷ = E (y|x) + ε = µy + ΣyΣ−1
x (x− µx) + ε

and ε ∼ N (0,Σy − Σ>xyΣ−1
x Σxy). This suggests an iterative way for sampling a (centered)

Gaussian process X(t) at the points {t0, t1, . . .}:
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• Initialization: draw a sample X̂(t0) from the distribution N (0, σ2
0)

• Step n ≥ 1: suppose the samples X̂(t0) . . . X̂(tn−1) have been generated.

– Compute the coefficients of linear prediction {ϕnk , k = 0 . . . n− 1} such that

E (X(tn)|X(t0), . . . X(tn−1)) =

n−1∑
k=0

ϕnkX(tk)

and the variance

σ2
n = E

(X(tn)−
n−1∑
k=0

ϕnkX(tk)

)2


– Draw a sample ε ∼ N (0, σ2
n) and set the n-th sample to

X̂(tn) =
n−1∑
k=0

ϕnkX̂(tk) + ε

We note that the procedure above does not depend on the chronological order of the points
{t0, t1 . . .}, and can be easily adapted to the case of multivariate Gaussian vector, or to have
more than one sample per step. This principle of conditionalized sampling is in particular
useful for establishing the Hosking method and the midpoint method as we shall see later.

3.2 Sampling methods for fBm

In this section we present several popular sampling methods for fBm. Excellent literature
reviews of the subject can be found for example in [Coeurjolly, 2000, Bardet et al., 2003,
Dieker, 2004].

3.2.1 Circulant embedding method

This method is also refered to as the Wood-Chan method and it is exact in sampling fGn
[Baraniuk and Crouse, 1999, Dietrich and Newsam, 1997, Chan and Wood, 1998, Craigmile, 2003].
The key observation here is that on the regular grid GN the covariance matrix of a fGn can be
embedded into a bigger circulant matrix, which can be efficiently diagonalized with Fourier
transform. The method can be adapted also to a general stationary process although it may
not be exact in that case.

Let (X(n))n=0,1... be a discrete-time centered stationary process and denote the sequence
of auto-covariance by cn = γX(n). We concatenate the sequence [c0, . . . cN−1] with the
reverted sequence [cN−2, cN−3, . . . c1] as

c̃ = [c0, c1 . . . cN−1, cN−2, cN−3, . . . c1] (3.5)
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which has size M = 2N − 2, and construct the symmetric circulant matrix from c̃ as

C̃ =



c0 c1 . . . cN−1 cN−2 . . . c1

c1 c0 . . . cN−2 cN−1 . . . c2
...

...
. . .

...
...

...
...

cN−1 cN−2 . . . c0 c1 . . . cN−2

cN−2 cN−1 . . . c1 c0 . . . cN−3
...

...
. . .

...
...

. . .
...

c1 c2 . . . cN−2 cN−3 . . . c0


whose the upper left N -by-N submatrix is nothing but the covariance matrix of the samples
(X(n))n=0,1...N−1.

Proposition 3.2.1. For a fGn
(
X

(H)
δ [n]

)
n=0,...N−1

, the Fourier transform of c̃{
λk =

1√
M

M−1∑
m=0

c̃me
−2πikm/M , k = 0, . . .M − 1

}
(3.6)

is real and non negative. In particular, C̃ is the covariance matrix of some random vector.

As a circulant matrix, C̃ can be diagonalized as

C̃ = F ∗ΛF

where F = (F )mn is the Fourier transform matrix with

Fmn =
1√
M

exp(−2πimn/M)

and Λ is the diagonal matrix with (Λ)kk = λk.

Proposition 3.2.2. Let u1,u2 ∼ N (0, IM ) be two iid real Gaussian random vectors, and

x := F ∗Λ1/2(u1 + iu2). (3.7)

Let xR,xI be the real and imaginary part of the complex vector x. Then it holds

E
(
xRx

>
R

)
= E

(
xIx

>
I

)
= C̃

Circulant embedding method

This method has the time complexity O(N logN) and is efficient for the simulation of long
trajectory, e.g. N = 106.

• Input: length of the trajectory N , or M = 2N − 2

• Step 1: given cn = γXδ
H

(nδ), construct the vector c̃ as in (3.5) and compute the vector
{λk, k = 0 . . .M} as in (3.6) via FFT;

• Step 2: compute the vector x as in (3.7): generate a sample of complex Gaussian
vector u1 + iu2, reweight it by

√
λk and take the inverse FFT;

• Step 3: take the first N coefficients of xR (or xI) as the output.
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3.2.2 Hosking method

The Hosking method, also known as the Levinson-Durbin method, is exact in sampling any
stationary process [Hosking, 1984]. Let (X(n))n=0,1,... be a discrete centered stationary pro-
cess. This method operates iteratively and generates a sample of X(n) conditionned on the
historical samples of (X(0), . . . X(n− 1)). According to the principle of sequential sampling
explained in section 3.1, this amounts to compute the coefficients of linear prediction and
the error of prediction (or the variance). Since the process is stationary these quantities can
be computed efficiently using the Levinson-Durbin iteration.

This method has time complexity O(N2) and can be summarized as follows.

• Input is the autocovariance function γ(·), or equivalently the partial correlation ρ(·).

• Initialization: set σ2
0 = γ(0) and draw a sample of X̂(0) ∼ N (0, σ2

0)

• Step n ≥ 1: suppose X̂(0), . . . X̂(n − 1) have been generated, repeat the procedure
below as long as n < N :

– Using Levinson-Durbin iteration to update the coefficients of linear prediction
ϕn = [ϕn1 , . . . ϕ

n
n] 

ϕnn = σ−2
n−1

(
γ(n)−

n−1∑
k=1

ϕn−1
n−kγ(k)

)
ϕnk = ϕn−1

k − ϕnnϕn−1
n−k, for k = 1, . . . n− 1

(3.8)

and the variance of residual σ2
n

σ2
n = (1− (ϕnn)2)σ2

n−1 =
n∏
k=1

(
1− (ϕkk)

2
)
σ2

0 (3.9)

– Draw a sample ε ∼ N (0, σ2
n) and set the n-th sample to

X̂(n) =
n∑
k=1

ϕnkX̂(n− k) + ε

– n← n+ 1

Remark 3.2.1. Note that for the step n = 1 the equation (3.8) is reduced to compute the
vector ϕ1 = [γ(1)/γ(0)]. The quantity ρ(n) = ϕnn is also known as the partial correlation
and it holds |ρ(n)| ≤ 1 for all n ≥ 1.

This method also provides a diagonalization of the covariance matrix.

Proposition 3.2.3. Let {ϕn}n=1,...N and
{
σ2
n

}
n=0,...N−1

be the sequence generated by the
Levinson-Durbin iteration (3.8) and (3.9), then it holds

Γ = A−1ΣA−> (3.10)
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where Σ is a diagonal matrix with (Σ)nn = σ2
n for n = 0, . . . N − 1, and the matrices Γ, A

are given by

Γ =


γ(0) γ(1) . . . γ(N − 1)
γ(1) γ(0) . . . γ(N − 2)
...

...
. . .

...
γ(N − 1) γ(N − 2) . . . γ(0)

 , A =


1 0 0 . . . 0
−ϕ1

1 1 0 . . . 0
−ϕ2

2 −ϕ2
1 1 . . . 0

...
...

...
. . .

...
−ϕN−1

N−1 −ϕN−1
N−2 . . . −ϕN−1

1 1


(3.11)

Proof. Omitted.

Sampling of a fractional ARIMA(p, d, q) process

The Hosking method allows to simulate a FARIMA(0, d, 0) process which is stationary for
d ∈ (−1/2, 1/2). In the case d ∈ ((n − 1)/2, (n + 1)/2), n 6= 0 one can simulate first
a stationary FARIMA(0, d − n, 0) process then filter the sample trajectory properly, see
[Hosking, 1984].

A general FARIMA(p, d, q) process with p > 0 or q > 0 can be simulated as follows.
First we draw a sample trajectory {x(n)}n=0,1... from a FARIMA(0, d, 0) process:

∇dx(n) = ε(n),

then filter it via (
1−

p∑
i=1

φiL
i

)
S(n) =

1 +

q∑
j=1

θjL
j

x(n), (3.12)

or equivalently via

S(n) =

p∑
i=1

φiS(n− i) + x(n) +

q∑
j=1

θjx(n− j)

In fact, taking the fractional differential ∇d on the two sides of (3.12) and commuting ∇d
with Lj shows that S is indeed an FARIMA(p, d, q) process.

3.2.3 Conditionalized random midpoint displacement method

The CRMD (or midpoint for short) method is a non-exact method for the simulation of fGn
[Norros et al., 1999, Lau et al., 1995]. The same trajectory is generated by dyadic refine-
ment from coarse to fine scale. This method exploits also the idea of sequential sampling,
but unlike the Hosking method where the whole history is used and the samples are gen-
erated in chronological order, CRMD only keep a truncated history of fixed length and the
samples are not drawn in chronological order. This method has time complexity O(N).
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Dyadic grid We consider the fGn process of increment 2−j on the interval [0, 1]:

Xj
k := X

(H)

2−j
(k), for k = 0, . . . , 2j − 1 (3.13)

with the autocovariance function

γj(n) := γ
X

(H)

2−j
(n) = 2−j2Hγ0(n) (3.14)

where γ0(·) is given by (2.9). Note that Xj−1
k = Xj

2k +Xj
2k+1 so

E
(
Xj−1
k Xj

2k′

)
= γj(2(k − k′)) + γj(2(k − k′) + 1), and

γj−1(n) = 2γj(2n) + γj(2n+ 1) + γj(2n− 1)

CRMD method

Input: length of the desired trajectory N , index of the coarsest scale j0, and window size w.

Step 1: (Coarse scale sampling) Generate a sample trajectory at the coarsest scale j0
using Cholesky or the circulant embedding method.

Step 2: (Dyadic refinement) Suppose the finest scale now is j − 1, and the samples
Xj−1 have been generated. If N ≤ 2j−1, keep only the first N samples and terminate,
otherwise refine Xj−1 to the next scale j by conditionalized sampling. This consists of

2a. the initial sampling of w points of even index at the leftmost;

2b. the forward propagation (from left to right) of all points of even index;

2c. the computation of all points of odd index;

and this step has to be repeated as long as necessary. The reason for step 2a is for better
handling the points near the bord since the errors made on these points will be propagated in
step 2b. We note that other scheme is possible, e.g. , initial sampling at the center followed
by a forward and backward propagation.

perhaps define more precisely what you mean with forward propagation

Step 2a: (Initial sampling) Generate the w leftmost points of even index of the process
Xj conditioned on the w leftmost points of the upper process Xj−1.

X̃j
2k := E

(
Xj

2k|X
j−1
0 , . . . Xj−1

w−1

)
=

w−1∑
n=0

ϕknX
j−1
n (3.15)

By definition of the orthogonal projection, it holds for any n′ = 0, . . . w − 1 that

E
(

(Xj
2k − X̃

j
2k)X

j−1
n′

)
= 0 (3.16)
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which gives the following Yule-Walker equation
w−1∑
n=0

γj−1(n′ − n)ϕkn = γj(2(n′ − k)) + γj(2(n′ − k) + 1) (3.17)

Using (3.14) this can also be written as

22H
w−1∑
n=0

γ0(n′ − n)ϕkn = γ0(2(n′ − k)) + γ0(2(n′ − k) + 1) (3.18)

or in matrix form as Γ0ϕ
k = vk. The conditionalized sampling of initialization is expressed

as

Xj
2k = X̃j

2k + U j2k (3.19)

with U j2k being the residual of projection. U j is a centralized Gaussian vector with the
covariance matrix

(ΓUj )k,k′ = E
(
U j2kU

j
2k′

)
= E

(
U j2kX

j
2k′

)
= 2−j2H

(
γ0(2(k − k′))− (vk)>Γ−1

0 (vk
′
)
)
(3.20)

The sampling of U j is done using the Cholesky method.

Step 2b: (Forward propogation) For k ≥ w, draw sample of Xj
2k conditioned on the

2w points around Xj−1
k of the process Xj−1 together with the w points of even index to the

left of the process Xj :

X̃j
2k := E

(
Xj

2k|X
j−1
k−w . . . X

j−1
k−1, X

j−1
k , . . . Xj−1

k+w−1, X
j
2(k−w) . . . X

j
2(k−1)

)
=

2w−1∑
n=0

ϕ−nX
j−1
k−w+n +

w−1∑
m=0

ϕ+
mX

j
2(k−w+m) (3.21)

The Yule-Walker equations read: for n′ = 0 . . . 2w − 1

2w−1∑
n=0

γj−1(n′ − n)ϕ−n+
w−1∑
m=0

(
γj(2(n′ −m)) + γj(2(n′ −m) + 1)

)
ϕ+
m =

γj(2(n′ − w)) + γj(2(n′ − w) + 1) (3.22)

and for m′ = 0 . . . w − 1
2w−1∑
n=0

(
γj(2(m′ − n)) + γj(2(m′ − n) + 1)

)
ϕ−n+

w−1∑
m=0

γj(2(m′ −m))ϕ+
m =

γj(2(m′ − w)) (3.23)

which are rewritten also as G0ϕ = u. For the same reason as in (3.18) the system matrix
G0 ∼ 3w×3w and the RHS vector u are actually independent of k and j, hence the absence
of these indices in the vector ϕ := [ϕ−, ϕ+]>. The conditionalized sampling of forward
propagation is expressed in the same way as (3.19), while the variance of the residual now
becomes

(σUj )2 := E
(

(U j2k)
2
)

= 2−j2H
(
γ0(0)− u>G−1

0 u
)

(3.24)
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Step 2c: (Odd indices) We obtain the points of odd index simply by

Xj
2k+1 = Xj−1

k −Xj
2k (3.25)

3.2.4 Wavelet method

The wavelet method for the simulation of fBm is based on the result that a fBm can be
approximated uniformly on a compact interval by a normalized FARIMA(0, H + 1/2, 0)
process, and the simulation of a long FARIMA process can be efficiently done with the
Mallat-type algorithm. This method is not exact and has time complexity O(N). We
resume here the main results of [Pipiras, 2005, Pipiras, 2004] which improves the original
method of [Meyer et al., 1999, Abry and Sellan, 1996].

Asymptotic expansion and approximation

Denote hereafter the constants

s = H + 1/2, d = H − 1/2

Let φ, ψ be respectively the real-valued orthonormal scaling and wavelet function associated
to a MRA with regularity r > s. We define respectively the fractional scaling and wavelet
function Φ+

H ,Ψ
+
H as well as the biorthogonal functions Φ−H ,Ψ

−
H in the frequency domain as

Φ̂±H(ξ) =

(
1− e−iξ

iξ

)±s
φ̂(ξ), Ψ̂±H(ξ) = (iξ)∓sψ̂(ξ) (3.26)

which are also real-valued functions.

Proposition 3.2.4. Let
{
B(H)(t)

}
t≥0

be a fBm. The following asymptotic expansion holds
almost surely on compact intervals:

B(H)(t) =

∞∑
k=−∞

Φ+
H(t− k)S

(H)
0 (k) +

∞∑
j=0

∞∑
k=−∞

2−jHΨ+
H(2jt− k)εj(k)− b0 (3.27)

where b0 is a random variable such that B(H)(0) = 0,
{
S

(H)
0 (k)

}
k∈Z

is a FARIMA(0, s, 0)

process starting at S(H)
0 (0) = 0 such that

S
(H)
j (k) = 2j(H+1)

∫
R
B(H)(t)Φ−H(2jt− k) dt (3.28)

and
{
εj(k)

iid∼ N (0, 1)
}
k∈Z

is a Gaussian noise being independent of the
{
S

(H)
0 (k)

}
k∈Z

such
that

εj(k) = 2j(H+1)

∫
R
B(H)(t)Ψ−H(2jt− k) dt (3.29)
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Moreover, we have the following uniform bound of approximation error on [0, 1]. For any
0 < ε < H and j ∈ Z :

sup
t∈[0,1]

∣∣∣2−jHS(H)
j ([2jt])−B(H)(t)

∣∣∣ ≤ C2−j(H−ε) (3.30)

almost surely, where C = C(H, ε, φ) is a random variable and [2jt] stands for the integer
part of 2jt.

Remark 3.2.2. The conclusions still hold if the condition S
(H)
0 (0) = 0 is dropped. In this

case just replace B(H)(t) by B(H)(t) + b0 in (3.28), (3.29) and (3.30).
Remark 3.2.3. Using the self-similarity of fBm it is easy to see that

S
(H)
j (k) ,

∫
R
B(H)(t)Φ−H(t− k) dt

which shows that the process
{
S

(H)
j (k)

}
k∈Z

follows the same distribution for any scale j ≥ 0.

In other words they are all FARIMA(0, s, 0) process.

Fast sampling of FARIMA process by dyadic wavelet synthesis

As shown by the uniform bound (3.30), one can take the truncated and normalized process{
2−jHS

(H)
0 (k)

}
k=0...2j−1

as approximation of
{
B(H)(t), t ∈ [0, 1]

}
, and the longer is the

truncated process the better is the approximation. The Hosking method allows to sample
exactly the FARIMA(0, s, 0) process with the complexity O(N2), which is still too slow for
large N . The Mallat-type algorithm presented here allows to obtain a sample trajectory
of FARIMA(0, s, 0) of length 2N from a trajectory of length N . Therefore from a short
initialization one can dyadically refine the trajectory to a desired length. The global time
complexity of this method is O(N).

Let u = {un}n , v = {vn}n be respectively the low- and high-pass filter (of finite length)
associated to the MRA. We denote by ↑2 x the up-sampling operation which inserts zero be-
tween two consecutive elements of the sequence x, and by ↓2 x the down-sampling operation
by a factor 2.

Proposition 3.2.5. Let {ξn}n be i.i.d. N (0, 1) variables. Suppose that {Xn}n is a Gaussian
process given by

Xn =
∞∑

k=−∞
hkξn−k (3.31)

or in the z-transformation by

X(z) = h(z)ξ(z) (3.32)

Define the filters uh, vh via the z-transformation as

uh(z) =
h(z)

h(z2)
u(z), vh(z) = h(z)v(z) (3.33)
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Let {εn}n be i.i.d. N (0, 1) variables, then the process {Yn}n defined by

Y = uh ∗ (↑2 X) + vh ∗ (↑2 ε) (3.34)

is a Gaussian process having the representation

Y (z) = uh(z)X(z2) + vh(z)ε(z2) = h(z)ε(z) (3.35)

In other words, Y has the same linear representation, or the same probability distribution,
as X.

Recall that a FARIMA(0, s, 0) process is described via the z-transform as (??). Then if
we define the fractional filters u(s), v(s) as

u(s) = f (s) ∗ u, v(s) = g(s) ∗ v (3.36)

where the filters f (s), g(s) are defined through the z-transformations as

f (s)(z) = (1 + z−1)s =
∞∑
n=0

f (s)
n z−n

g(s)(z) = (1− z−1)−s =
∞∑
n=0

g(s)
n z−n

(3.37)

As a consequence of Proposition 3.2.5 we obtain the following Mallat-type synthesis algo-
rithm

S
(H)
j = u(s) ∗ (↑2 S(H)

j−1) + v(s) ∗ (↑2 ε) (3.38)

Remark 3.2.4. On causal signals the z-transformation (1 + z−1) corresponds to the FIR
filter [1, 1] and its inverse (1 + z−1)−1 corresponds to the IIR filter [1,−1, 1,−1 . . .]. The
z-transformation (1 − z−1)−1 corresponds to the cumulative sum and its inverse (1 − z−1)
corresponds to the FIR filter [1,−1].

Computation of fractional filters

The difficulty however resides in the computation of the fractional filters u(s) and v(s). In
fact the coefficients of f (s) and g(s) are given by

f (s)
n =

Γ(s+ 1)

Γ(n+ 1)Γ(s− n+ 1)

g(s)
n = (−1)nf (−s)

n =
Γ(n+ s)

Γ(n+ 1)Γ(s)
∼ ns−1

Γ(s)
, as n→∞,

(3.39)

therefore the coefficients either diverge (when H > 1/2) or decay very slowly (when H <
1/2), making the computation of (3.36) difficult.

We can circumvent this issue by changing the original filters to u0, v0 which are defined
by z-transformation as

u0(z) = (1 + z−1)−ru(z), v0(z) = (1− z−1)−rv(z) (3.40)
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where r > s is some fixed integer, such that the fractional filters are expressed as

u(s) = f (s+r) ∗ u0, v
(s) = g(s−r) ∗ v0 (3.41)

The asymptotic in (3.39) shows that now one can achieve any desired decay for the coeffi-
cients of the filter f (s+r) and g(s−r) by choosing accordingly the value of r.

Note that the modified filters u0, v0 are FIR as long as u, v are so. In fact u0 is the
r-times repeated convolution of u with the IIR [1,−1, 1,−1 . . .], while v0 is the r-times
repeated cumulative sum of v.

Wavelet synthesis of fBm

We use the Daubechies wavelet of r = 5 vanishing moment here, in which the filters u, v
have finite length. The overall algorithm of wavelet synthesis can be resumed as follows.

• Input: the desired length N and the initial scale j0, the fractional filters u(s), v(s) com-
puted off-line via (3.41) with truncated filters f (s+r) and g(s−r) up to some precision
level fixed by user.

• Initialization: at scale j = j0 generate a sample trajectory of a FARIMA(0, s, 0) process
S

(H)
j of length 2j by some exact method, e.g. the Hosking method. Repeat the next

step as long as N > 2j .

• Scale j + 1: apply (3.38) on S(H)
j and to obtain S(H)

j+1. Set j ← j + 1.

• Output:
{

2−jH
(
S

(H)
j (k)− S(H)

j (0)
)}

k
which is an approximation of

{
B(H)(2−jk)

}
k
,

for k = 0, . . . 2j − 1.

3.3 Sampling methods for mBm

We aim here at generating a sample trajectory of the mBm (W (H)(t))t∈R on the regular
grid GN of the interval [Tmin, Tmax] = [0, 1], with a prescribed function of Hurst exponent
H(·) which satisfies the condition (2.54) and is bounded in [Hmin, Hmax]. References to
this subject can be found among others in [Chan and Wood, 1998, Helgason et al., 2011].
Besides the discretization of time, we will use the following discretization in H of size M :

HM :=

{
(Hmax −Hmin)×

(
0,

1

M
,

2

M
, . . . ,

M − 1

M

)
+Hmin

}
then a pair (t,H(t)) is converted to a point (tj , Hmj ) of the grid GN ×HM , with

j =

⌊(
t− Tmin

Tmax − Tmin

)
×N

⌋
,mj =

⌊(
H(t)−Hmin

Hmax −Hmin

)
×M

⌋
(3.42)

where bxc denotes the largest integer smaller than or equal to x. In this section unless
specified, the notation (tj , Hi) stands for the (j, i)-th point in the grid GN ×HM .
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As for the fBm case, we can use the Cholesky method described in section 3.1 which
consists in evaluating the covariance matrix on the grid points by (2.59) then decomposing
it to obtain a sample trajectory. However other more efficient sampling methods for fBm
can not be applied to mBm in general, essentially due to the loss of the stationarity of the
increment process.

A simple idea is to first draw a sample of the field (B(t;H))t,H for t ∈ [0, 1] and H ∈
[Hmin, Hmax] then set, according to definition, W (H)(tj) = B(tj ;H(tj)). The simulation of
the this random field is however a challenging problem, since its covariance function given
by (2.47) seemingly lacks stationary structure (up to some transformation though). We
propose here two approaches to handle this problem.

3.3.1 Methods of increment process

The idea of the first approach is to generate the increment process ∆δW
(H) with δ = 1/N

then obtain a sample trajectory of W (H) by accumulation:

W (H)(tj) =

j−1∑
i=0

∆δW
(H)(ti)

More precisely, we define the Gaussian vectors

Y = (δ−H(tj)∆δW
(H)(tj))n=0...N−1, and X = (δ−H(tj)X

(H(tj))
δ (j)))j=0...N−1

where X(H(tj))
δ is the fGn of Hurst exponent H(tj) being defined in (2.8). Then Corollary

2.5.2 says that for δ small the distribution of Y is well approximated by that of X. This
suggests the following scheme of sampling.

Scheme of sampling For each j = 0 . . . N − 1,

• first convert H(tj) to a grid point Hmj ∈ HM using (3.42).

• draw in some manner (see the remark below) a sample path of length N of X
(Hmj )

1 ,
i.e. the standard fGn with unit step and Hurst exponent Hmj , take the j-th value and

set Yj = N−HmjX
(Hmj )

1 (j).

The vector (Yj)j obtained in this way is then an approximation of the sample path of
∆δW

(H) on [0, 1].

This scheme however is not complete and needs some explications here. Suppose that
we have drawn X(Hmi )

1 for i = 0 . . . j − 1, then at step j the sample path of X
(Hmj )

1 must
be drawn conditionalized on all the historical samples (see section 3.1), otherwise what we
generated at the end (after a cumulative sum in time) would not be a “true” sample of the
random field (B(t,H))t∈(0,1),H∈(Hmin,Hmax) since it would fail to have the correct covariance
structure (2.47). This covariance structure implies, intuitively speaking, that the “horizontal
lines” of the field are correlated (we treat t as the horizontal axis and H as the vertical axis).

In particular, if the sample path X
(Hmj )

1 is drawn independently for all j then the resulting
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random field will inherit this independence so that the “horizontal lines” are independent
between them, violating in this way the true covariance structure. We propose here a

conditionalized sampling method for the sequence
(
X

(Hmj )

1

)
j

.

Conditionalized sampling of a sequence of stationary process

For ease of notation, we denote by
(
Xj
)
j=0,1...N−1

the sequence
(
X

(Hmj )

1

)
j=0,1...N−1

. We

denote also the covariance function by Γj,j
′ :

E
(
Xj
nX

j′

n′

)
= Γj,j

′
(n− n′). (3.43)

From (2.60) it follows

Γj,j
′
(n− n′) = D(H(tj), H(tj′))

1

2

(∣∣n− n′ + 1
∣∣2H̄ +

∣∣n− n′ − 1
∣∣2H̄ − 2

∣∣n− n′∣∣2H̄) (3.44)

where H̄ = (H(tj) +H(tj′))/2, and in particular Γj,j(0) = 1. Remark that if j > j′ is such
that H(tj) = H(tj′), then from (3.44) it follows

E
(∥∥∥Xj −Xj′

∥∥∥2
)

= 0

therefore the sample of Xj must be the replicate of the sample of Xj′ .

Linear prediction Let Vj be the linear space spanned by
{
X0 . . . , Xj

}
and ΠVj−1(Xj)

be the orthogonal projection of Xj onto Vj−1. The error of prediction is

Ej := Xj −ΠVj−1(Xj) (3.45)

with the exception that E0 = X0. Whenever it is meaningful we write

Ej = ρjε
j , with ρj =

√
E
(
‖Ej‖2

)
(3.46)

where
∥∥Ej∥∥2

=
〈
Ej , Ej

〉
and 〈·, ·〉 denotes the inner product between two vectors. For the

computation of ΠVj−1(Xj) we have to handle the singular case. For this let (jn)n=1,2,... be
the increasing sequence of all j such that ρj 6= 0 (in particular j1 = 0), and d(j) be the
dimension of Vj defined by

dj := # {i|0 ≤ i ≤ j ∧ ρi 6= 0} . (3.47)

Clearly it holds djn = n and Vj = Vjn−1 for all jn−1 ≤ j < jn. This implies

djn−1 = djn−1 = n− 1 for all n ≥ 2, (3.48)

and Vj can be expressed as

Vj =
{
Xj1 , . . . X

jdj
}
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which allows to write the orthogonal projection as:

ΠVj−1(Xj) =

dj−1∑
n=1

φjnX
jn (3.49)

The coefficients of linear prediction φj := (φjn)n=1...dj−1
is characterized by

min
φ∈Rdj−1

E

∥∥∥∥∥∥Xj −
dj−1∑
n=1

φnX
jn

∥∥∥∥∥∥
2 .

and it is the unique solution to the following Yule-Walker equation:

dj−1∑
n=1

E
(〈
Xjn′ , Xjn

〉)︸ ︷︷ ︸
(Gdj−1 )n′,n

φjn = E
(〈
Xjn′ , Xj

〉)︸ ︷︷ ︸
(γj)n′

, for n′ = 1 . . . dj−1 (3.50)

This is rewritten as

Gdj−1φj = γj (3.51)

and the symmetric matrix Gdj−1 and the vector γj are given explicitly by

(Gdj−1)n′,n = NΓjn′ ,jn(0), for n′, n = 1 . . . dj−1

(γj)n′ = NΓjn′ ,j(0), for n′ = 1 . . . dj−1 (3.52)

Change of basis On the other hand since
{
εjn
}
n=1,...dj

is an orthonormal basis of Vj , it
holds

Vj =
{
εj1 , . . . ε

jdj
}

which allows to write the orthogonal projection as:

ΠVj−1(Xj) =

dj−1∑
n=1

ψjnε
jn , with ψjn := E

(〈
Xj , εjn

〉)
(3.53)

Note that

E
(〈
Xjl , εjl′

〉)
=


0, if l′ > l

ρjl , if l′ = l

ψjll′ , if l′ < l

and by definition of the residual it holds

εjn = ρ−1
jn

(
Xjn −

n−1∑
m=1

ψjnm ε
jm

)
, (3.54)
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injecting this into ψjn = E
(〈
Xj , εjn

〉)
gives the following linear system

ρj1ψ
j
1 = NΓj,j1(0),

n−1∑
m=1

ψjnmψ
j
m + ρjnψ

j
n = NΓj,jn(0), for n = 2, . . . dj−1

where the RHS comes from (3.43). We rewrite this as

F dj−1ψj = γj (3.55)

where F dj−1 ∼ dj−1 × dj−1 is a lower triangular matrix. Moreover it follows by identifying
(3.49) and (3.53) the formula of change of basis

ψj = (F dj−1)>φj (3.56)

Covariance of error Using the coefficients of linear prediction, the covariance matrix

W j =
(
E
(
Ejl E

j
l′

))
l=1...N,l′=1...N

(3.57)

can be computed explicitly with

E
(
Ejl E

j
l′

)
= Γj,j(l − l′)− 2

dj−1∑
n=1

φjnΓj,jn(l − l′) +

dj−1∑
n=1

dj−1∑
n′=1

φjnφ
j
n′Γ

jn,jn′ (l − l′). (3.58)

Note that W j is Toeplitz so it can be efficiently diagonalized. In particular for j ≥ 1 the
variance of the residual is

ρ2
j = E

(∥∥Xj
∥∥2
)
− (φj)>γj = E

(∥∥Xj
∥∥2
)
−
∥∥ψj∥∥2 (3.59)

LU decomposition For k ≥ 1 the vectors φjk+1 ,ψjk+1 ∈ Rk correspond to the projection
of Xjk+1 onto the space Vjk and they are the solution to

Gkφjk+1 = γjk+1 , F kψjk+1 = γjk+1 (3.60)

respectively. Define the matrix

Ak :=


1 0 0 . . . 0

−φj21 1 0 . . . 0

−φj31 −φj32 1 . . . 0
...

...
...

. . .
...

−φjk1 −φjk2 . . . −φjkk−1 1

 for k ≥ 2, and A1 = (1). (3.61)

and recall that

F k =


ρj1 0 0 . . . 0

ψj21 ρj2 0 . . . 0

ψj31 ψj32 ρj3 . . . 0
...

...
...

. . .
...

ψjk1 ψjk2 . . . ψjkk−1 ρjk

 for k ≥ 2, and F 1 = (ρj1). (3.62)

then we have the following LU decomposition of the system matrix.
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Proposition 3.3.1. For k ≥ 1 it holds

(Gk)−1 = (Ak)>(Σk)−1Ak, and Gk = F k(F k)> (3.63)

where Σk is the diagonal matrix with Σk
nn = ρ2

jn
for n = 1, . . . k. Moreover,

(Σk)1/2(F k)−1 = Ak (3.64)

Proof. By definition of φjk we have the identity

[Ej1 Ej2 . . . Ejk ] = [Xj1 Xj2 . . . Xjk ](Ak)>

where the LHS is the concatenation of columns vectors and the RHS is a matrix product.
Since Ej are mutually orthogonal, multiplying the LHS by its transpose at left and taking
expectation yields Σk. The same operation on the RHS yields (Ak)Gk(Ak)>. Finally the
first identity of (3.63) follows by taking inverse. For the second identity of (3.63) we write

[Xj1 Xj2 . . . Xjk ] = [εj1 εj2 . . . εjk ](F k)>

and proceed in the same way. For (3.64) we observe that F k and Ak both have a recursive
structure and applying the block-inversion formula and (3.56) gives

(F k)−1 =

 (F k−1)−1 0

−ρ−1
jk

(φjk)> ρ−1
jk

 (3.65)

Therefore (3.64) follows by comparing (F k)−1 with Ak.

Conditionalized sampling of (Xj)j=0,...N−1 Assembling the elements above gives the
following algorithm.

• Initialization: Generate a sample X̂0 from X0 via Circulant embedding, and set

– k = 1, j1 = 0, ρ0 =
√
N

– sequence J = {j1}, X =
{
X̂0
}

– matrix (F 1)−1 = (ρ−1
0 )

• Iteration j > 0: Given the samples X =
{
X̂0, . . . X̂j−1

}
,

– if there exists j′ < j such that Hmj = Hmj′ , set X̂
j = X̂j′

– otherwise, compute by order

γj = (NΓjn,j(0))n=1,...k (3.66)

ψj = (F k)−1γj (3.67)

φj = (F k)−>ψj (3.68)

µj =
k∑

n=1

φjnX̂
jn (3.69)

ρj =
(
N −

∥∥ψj∥∥2
)1/2

(3.70)
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∗ if ρj = 0, set X̂j = µj

∗ otherwise construct the matrix W j using (3.58) (where the term dj−1 is
replaced by k) and draw a sample Êj from the distribution N (0,W j) via
Circulant embedding and set X̂j = µj + Êj . Update by order

k ← k + 1 (3.71)
jk = j,J ← J ∪ {jk} (3.72)

(F k)−1 according to (3.65) (3.73)

Update X ← X ∪
{
X̂j
}

and set j ← j + 1. If j < M jump to the next iteration
otherwise terminate.

• Output: sequence of samples X =
{
X̂0, . . . X̂N−1

}
.

Remark 3.3.1. The innovation equations for ψj ,φj are not unique. For example we could
use

φj = (Ak)>(Σk)−1Akγj (3.74)

ψj = (F k)>φj (3.75)

and update Ak,F k rather than (F k)−1. Note that in this case the variable ψj becomes
unnecessary.

Final algorithm

Now one can inject the conditionalized sampling into the scheme mentioned at the beginning
of section 3.3.1. Since H(tj) is converted to a grid point and the conditional sampling does
not depend on the chronological order, we can use the algorithm of conditionalized sampling
to draw from the sequence (X

(Hi)
1 )i=0,...M−1, i.e. with strictly increasing Hurst exponent of

the grid HM , then recover the desired increment process (Yj)j as before.
This algorithm has the time complexity O(MN2) which is faster than Cholesky for

small M , and in practice it may diverge when the grid HM becomes too fine, e.g. with a
step ≤ 0.025. On a coarse grid it allows to simulate sample paths of length N = 105 for
which Cholesky may fail due to limitation of resources.

3.3.2 Series expansion method

Another approach is to simulate the random field (B(t;H))t∈R+,H∈(0,1) via the series expan-
sion (2.34), which amounts to compute the coefficients of the representation kernel under
some fixed L2(R) basis. Consider for example an orthonormal wavelet basis: the series ex-
pansion then has to be truncated up to some scale j0 and some position N0 and we need
to characterize the truncation error, furthermore for the simulation of long trajectory the
truncated series has to be evaluated efficiently. In the following we will first explain the
Fourier-Wavelet method which allows to establish bounds on the truncation error. Then we
propose two efficient methods to evaluate approximately the coefficients of series expansion.

In this section we follow the convention (1.1) of the Fourier transform. Given an arbitrary
f ∈ L2(R) we will write f j(·) = 2j/2f(2j ·) its dilation at the scale j ∈ Z and f jn(·) =
f j(· − 2−jn) its translation at the position indexed by n.
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Fourier-Wavelet method

We consider an orthonormal wavelet basis generated by a scaling function φ and a mother
wavelet function ψ fulfilling the partition of unity: for any j0 ∈ Z it holds∣∣∣φ̂j0(ξ)

∣∣∣2 +
∑
j≥j0

2j
∣∣∣ψ̂j(ξ)∣∣∣2 =

1

2π
, for almost every ξ ∈ R (3.76)

and the family {
φj0n , for n ∈ Z

}⋃{
ψjn, for j ≥ j0, n ∈ Z

}
(3.77)

constitutes an orthonormal basis of L2(R). Moreover we suppose that for some integer p
the first p derivatives of φ̂ and ψ̂ are integrable, so that φ(t) and ψ(t) both decay at infinity
as O(1 + |t|)−p by Paley-Wiener theorem.

Meyer wavelets We will consider the Meyer wavelet for reason of simpleness. Its scaling
function φ is defined in frequency domain as:

φ̂(ξ) =
1√
2π


1, if |ξ| ≤ 2π

3

cos
(
π
2 ν
(

3
2π |ξ| − 1

))
if 2π

3 ≤ |ξ| ≤
4π
3

0 otherwise
(3.78)

where the function ν satisfies

ν(ξ) =


0, if ξ ≤ 0

1, if ξ ≥ 1

transition from 0 to 1, otherwise
(3.79)

and ν(ξ)+ν(1−ξ) = 1. Its mother wavelet ψ is constructed from φ and defined in frequency
domain as:

ψ̂(ξ) =
1√
2π


eiξ/2 sin

(
π
2 ν
(

3
2π |ξ| − 1

))
if 2π

3 ≤ |ξ| ≤
4π
3

eiξ/2 cos
(
π
2 ν
(

3
4π |ξ| − 1

))
if 4π

3 ≤ |ξ| ≤
8π
3

0 otherwise
(3.80)

Note that both φ, ψ are real, even and smooth function.

Kernel of representation We will explain the method with the first kernel mentioned
in section 2.3.1, i.e.

K(x) = K(t, x;H) := a0

(
|t− x|H−1/2 − |x|H−1/2

)
(3.81)

where a0 is defined in (2.44), and recall its Fourier transform

K̂(ξ) =

(
Γ(2H + 1) sin(πH)

2π

)1/2 eitξ − 1

|ξ|H+1/2
. (3.82)
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Bounds on the truncation error Using the family (3.77) the field B(t,H) can be
expressed as

B(t,H) =
∑
n∈Z

〈
K,φj0n

〉
Zn +

∑
j≥j0

∑
n′∈Z

〈
K,ψjn′

〉
Zjn′

where Zn and Zjn′ are all i.i.d. standard Gaussian random variables. As an approximation
we consider the following field

B̃(t,H) :=

N0∑
n=−N0

〈
K,φj0n

〉
Zn (3.83)

for some fixed integer N0, with the error of truncation

E
(∣∣∣B(t,H)− B̃(t,H)

∣∣∣2) =
∑
|n|>N0

∣∣〈K,φj0n 〉∣∣2 +
∑
j≥j0

∑
n′∈Z

∣∣∣〈K,ψjn′〉∣∣∣2 = E1 + E2. (3.84)

We establish here the bounds on this error which will guide the choice of j0 and N0.

Sampling operator Let Sj be the sampling operator applying on a smooth test function
g such that in the sense of distribution

Sjg(x) =
∑
n∈Z

g(2−jn)δ(x− 2−jn) (3.85)

and its Fourier transform reads, using the Poisson summation formula,

Ŝjg(ξ) = 2j
∑
k∈Z

ĝ(ξ − 2π2jk) (3.86)

Bound on E2 By the property of orthonormal basis, it holds

E2 = ‖K‖2 −
∑
n∈Z

∣∣〈K,φj0n 〉∣∣2
Remark that φ is even and the convolution K ∗ φj0 is smooth, so it holds in the L2 sense∑

n∈Z

〈
K,φj0n

〉
φj0n = (Sj0(K ∗ φj0)) ∗ φj0 (3.87)

and the Parseval’s identity together with (3.86) gives

∑
n∈Z

∣∣〈K,φj0n 〉∣∣2 =

∥∥∥∥∥∑
n∈Z

〈
K,φj0n

〉
φj0n

∥∥∥∥∥
2

L2

= 4π222j0

∥∥∥∥∥∥φ̂j0
∑
|k|≤1

(K̂φ̂j0)(· − 2π2j0k)

∥∥∥∥∥∥
2

L2
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where the finite sum in the last term is due to the compact support of φ̂j0 and does not
introduce aliasing on the interval [−2π2j0/3, 2π2j0/3]. This gives

∑
n∈Z

∣∣〈K,φj0n 〉∣∣2 ≥ (4π)2

∫ 2π
3

2j0

0

∣∣sin(1
2 tξ)

∣∣2
|ξ|2H+1

dξ

and finally we obtain the bound

E2 .
∫ +∞

2π
3

2j0

∣∣sin(1
2 tξ)

∣∣2
|ξ|2H+1

dξ ≤ C22−2j0H (3.88)

where the constant factor C2 depends only on H.

Bound on E1 First note that K̂φ̂j0 is not integrable for H > 1/2 and K̂ is not differen-
tiable at 0. The last statement comes from the observation that for any t 6= 0

lim
ξ→0

∣∣eitξ − 1
∣∣

|ξ|h
= 2 lim

ξ→0+

sin(1
2 tξ)

ξh
=


+∞ if h > 1,

t if h = 1,

0 if h < 1.

Therefore the Payley-Wiener theory can not be applied directly here to characterize the
asymptotic decay of the coefficient

〈
K,φj0n

〉
. We proceed hence by direct computation for

the case H 6= 1/2 (the case H = 1/2 can be treated similarly). Note that for x large

K(t, x− y;H) = (1/2−H)t sign(x) |x|H−3/2

(
1− y + θt

x

)H−3/2

where the constant θ ∈ (0, 1) depends on y and t, and

lim
x→∞

∫
R

(
1− y + θt

x

)H−3/2

φj0(y) dy =
√

2π2−j0/2

therefore for x large K ∗ φj0(x) = O(|x|H−3/2). Finally we obtain

E1 =
∑
|n|>N0

∣∣K ∗ φj0(2−j0n)
∣∣2 . 2−2j0(H−1)

∑
|n|>N0

|n|2H−3 ≤ C1(2−j0N0)2(H−1). (3.89)

where the constant factor C1 depends on t and H.

Computation of basis coefficients

–To Do–Suppose j0, N0 are set according to the error bounds, now we aim at computing
the coefficients

〈
K,φj0n

〉
. First write〈
K̂(t, ·;H), φ̂j0n (·)

〉
=

1

2j0H
1√
2π

(Iφ1 + Iφ2 )
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with the integrals

Iφ1 :=

∫
|ξ|∈[0, 2π

3
]

ei(2
j0 t−n)ξ − e−inξ

|ξ|H+1/2
dξ = 2

∫ 2π
3

0

cos
(
(2j0t− n)ξ

)
− cos (nξ)

ξH+1/2
dξ,

Iφ2 := 2

∫ 4π
3

2π
3

cos
(
(2j0t− n)ξ

)
− cos (nξ)

ξH+1/2
cos

(
π

2
ν

(
3

2π
|ξ| − 1

))
dξ

and note that the last integrand in Iφ1 is well defined at 0. Although these integrals can be
evaluated efficiently via some numerical integration method, such a method is impracticable
for the simulation of long trajectory.
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Chapter 4

Parameter estimation in fBm

We use the same notations as in Chapter 2. Recall that B(H) is a pure fBm with the volatility
σ2 = E

(∣∣B(H)(1)
∣∣2). Given discrete observations (B(H)(nδ))n∈Z with the sampling step

δ > 0, we aim to make estimations of the Hurst exponent H as well as the volatility σ2.
However the volatility σ can not be extracted without knowing the sampling step δ, therefore
in the following we will consider the set of parameters θ = {H, v} with

v := σδH (4.1)

being the scaled volatility. The estimation of v can be easily obtained from that of H,
see e.g. [Brouste and Iacus, 2013, Brouste and Fukasawa, 2016] for detailed results on the
property of joint estimator.

4.1 Overview

Many popular methods have been proposed for estimation of Hurst exponent, see e.g. []
and references therein. Generally speaking the information about H can be extracted by
exploiting 1) the time-dependency which is a consequence of the autocovariance structure,
or 2) the scale-dependency which is a consequence of the self-similarity. Corresponding to
the two types are two classes of estimators:

1. maximum likelihood-type which uses time information only

2. the scalogram-type which uses scale information only

We will focus on these two classes of estimators and propose some generalizations.

4.2 Maximum-Likelihood Estimator

We present first the general framework of MLE, then adapt it to different type observations
constructed from the same sample trajectory which gives different variations of MLE. For
general properties of MLE, see e.g. [Lundahl et al., 1986].
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4.2.1 General framework

Let x ∈ Rd be a centered multivariate Gaussian vector with the invertible covariance matrix
C = C(θ) that depends on a set of parameters θ. The pdf of x reads

p (x|C) = (2π)−d/2 |det C|−1/2 exp

(
−1

2
x>C−1x

)
. (4.2)

and the log-pdf is

`(θ;x) := log p (x|C) = −1

2

(
x>C−1x+ log |det C|+ d log(2π)

)
(4.3)

Given independent observations X = {x1, . . .xN}, we define the MLE of θ as

θ̂ := arg max
θ

L(θ;X). (4.4)

with the sample log-likelihood

L(θ;X) :=

N∑
n=1

`(θ;xn) (4.5)

Partial derivatives Numerical solution of (4.4) requires the (first and second order)
partial derivatives of `(θ;x) which can be obtained using the rules

∂

∂θ

(
C−1

)
= −C−1

(
∂

∂θ
C

)
C−1

∂

∂θ
(log det C) = trace

(
C−1 ∂

∂θ
C

) (4.6)

Namely, the first order partial derivative reads

∂`

∂θi
(θ;x) = −1

2
trace

((
C−1 − ξξ>

) ∂C

∂θi

)
(4.7)

and the second order partial derivative reads

∂2`

∂θi∂θj
(θ;x) = −1

2
trace

((
C−1 − ξξ>

)( ∂2C

∂θi∂θj
−Aji

)
+ ξξ>Aij

)
(4.8)

where we introduced the vector ξ := C−1x and the matrix

Aij :=
∂C

∂θi

(
C−1

) ∂C

∂θj
. (4.9)

It can be checked for (4.8) that ∂θi∂θj` = ∂θj∂θi`, although in general Aij 6= Aji.
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Joint estimation This general framework can be simplified for the joint estimation of the
scaled volatility v and the Hurst exponent H. The covariance matrix C above now reads

C = v2Γ

where the matrix Γ = Γ(H) depends on the type of observations constructed from the
sample trajectory. The sample log-likelihood now reads

L(H, v;X) = −1

2

N∑
n=1

(
v−2x>nΓ−1xn + d log v2 + log |det Γ|+ d log(2π)

)
and the optimal v is first obtained by setting ∂vL(H, v;X) = 0:

v2 =
1

Nd

N∑
n=1

x>nΓ−1xn. (4.10)

Injecting this back gives the H-dependent log-likelihood

L(H;X) = −1

2

(
Nd log

(
N∑
n=1

x>nΓ−1xn

)
+N log |det Γ|

)
− Nd

2
log

(
2πe

Nd

)
(4.11)

and the optimal estimation of H is defined as

Ĥ := arg max
H∈(0,1)

L(H;X). (4.12)

In practice the problem (4.12) can be easily solved using for example Brent’s method.

4.2.2 fWn bank-MLE

In this approach the observation x = (xj)j ∈ RJ is a bank of fractional Wavelet noise as
defined in Section 2.7.1, i.e. the filtration of fBm by a filter bank {ψ1, . . . ψJ} satisfying
(2.88). Namely, at time t the j-th dimension of the coefficient vector is

xj(t) :=
∑
k∈Z

ψj [k]B(H)(t+ kδ) (4.13)

From (2.93) the covariance between two scales i, j and two positions mδ, nδ is given by:

E (xi((n+ l)δ)xj(nδ)) = v2γψi,ψj (l) (4.14)

where γψi,ψj denotes the covariance function (2.92). Using (2.92) we only need to compute
the coefficients (a[k])k in (2.91) in order to evaluate this expression. We will consider l
adjacent positions and introduce the J-by-J covariance matrix Γl with the (i, j)-th coefficient

Γli,j := γψi,ψj (l). (4.15)
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Then the concatenation of l adjacent observation vectors x follows a multivariate Gaussian
distribution N (0, v2Γ) with Γ being constructed blockwisely as

Γ =


Γ0 Γ1 . . . Γl−1

Γ−1 . . . . . .
...

...
. . . . . . Γ1

Γ1−l . . . Γ−1 Γ0

 (4.16)

which is symmetric thanks to the relation Γl =
(
Γ−l
)>.

The fWn bank-framework presented above is general, and as particular cases we have

• fGn-MLE: we take the filter bank {ψj} with ψj being the filter in (2.98) which computes
the increment process (fGn) at the scale j.

• B-Spline-MLE: we use the filter bank of the order q B-Spline wavelet ψ(q) as defined
in section 2.7.3.

Remark 4.2.1. An important issue concerning the practical use of the fWn bank-MLE
method is the cross-scale interference. The framework presented here has been established
on a pure fBm which is scale invariant, however in practice the long memory behavior of
data is often scale dependent. This means in particular the theoretical covariance function
(4.14) will fail to hold if 1) the scales i, j are too distinct 2) on a large scale the distinct
positions m,n are too close to each other. Therefore it is better to work only with adjacent
scales and downsample the coefficients (4.13) in order to avoid cross scale interference.

4.3 Power law method

Recall the p-th moment (p ≥ 1) of fGn:

E
(∣∣∣B(H)(t+ δ)−B(H)(t)

∣∣∣p) = cp
(
σδH

)p (4.17)

where the constant cp is

cp :=

√
2p

π
Γ

(
p+ 1

2

)
(4.18)

with Γ being the Gamma function. For the fGn at the step kδ for integer k = 1, . . .K the
p-th logarithmic moment reads,

yk := logE
(∣∣∣B(H)((n+ k)δ)−B(H)(nδ)

∣∣∣p) =
(
log cp + p log(σδH)

)︸ ︷︷ ︸
=:η

+ (p log k)︸ ︷︷ ︸
=:xk

H (4.19)

which does not depend on the index n since fGn is stationary. We then form the K-
dimensional vectors x and y such that

Hx + η1 = y (4.20)
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By definition of η it holds

v = σδH = e(η−log cp)/p (4.21)

In practice y can be computed by e.g. the sample mean. Once some estimation of H is
obtained, we compute v via (4.21).

Estimator for H A standard way for the estimation of H is via linear regression of
(4.20), which does not guarantee 0 < H < 1. As a remede, we propose to replace the linear
regression step by a constrained optimization problem

min
H∈(0,1),η

K∑
k=1

|yk − (Hxk + η)|2

Note that the optimizer of η satisfies

η =
1

K

K∑
k=1

(yk −Hxk)

hence the joint optimization above is reduced to

min
H∈(0,1)

K∑
k=1

|ỹk −Hx̃k|2 (4.22)

with x̃k := xk −K−1
∑K

k=1 xk and similarly for the vector ỹk.

4.4 Scalogram method

Let {s1, s2, . . . sJ} be distinct integer scales used in DCWT. In particular for the B-Spline
DCWT introduced in section 2.7.2 the scales are even number, e.g. si = 2i. According
to Proposition 2.7.1 the covariance function at time-lag l and at the scale index i, j is
independent of the time index n and reads

E
(
wψX [n; si]w

ψ
X [n+ l; sj ]

)
' v2Γli,j (4.23)

where Γli,j is the (i, j)-th coefficient of the matrix Γl:

Γli,j := Aψρ

(
l

√
sisj

, H

)(√
sisj

)2H+1
, with ρ = sj/si (4.24)

The scalogram refers to the diagonal coefficients of the covariance matrix Γ0, i.e.

Γ0
j,j = Aψ(H)s2H+1

j (4.25)

and represent the energy of the signal at different scales. More generally the p-th moment
of the wavelet coefficients reads

E
(∣∣∣wψX [n; sj ]

∣∣∣p) ' cpvp (Γ0
j,j

)p/2
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with the same constant cp of (4.18). In order to extract H we define the vector y as

yj := logE
(∣∣∣wψX [n; sj ]

∣∣∣p) ' (H + 1/2) log(spj )︸ ︷︷ ︸
=:xj

+ log cp + (p/2) logAψ(H) + p log v︸ ︷︷ ︸
=:η

Then form the vectors x such that

(H + 1/2)x + η1 = y (4.26)

By definition of η it holds

v = e(η−(p/2) logAψ(H)−log cp)/p (4.27)

The vector y is constructed from data by computing the sample covariance matrix and
the estimation of H and v is obtained via linear regression of (4.26), or using a similar
optimization procedure as in Power law estimator.

The above scalogram estimator can be easily generalized by observing that oblique off-
diagonals in (4.24) also allows to extract H, we skip the detail here.
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