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A B S T R A C T

The quantity of data, information, and knowledge in the biomedical domain
is increasing at an unprecedented rate — with no signs of deceleration. Even
with the assistance of information retrieval technologies, it is overwhelming, if
not impossible, for individuals or groups of researchers to be knowledgeable of
the state-of-the-art in any but an incredibly specific topic. Besides their obvious
increases in volume and velocity, data are also increasing in variety as multi-
modal and multi-scale experiments grow more important in the investigation of
complex diseases. As experiments’ complexities grow, so does the intellectual
and temporal burden of analysis and interpretation.

The ability to reason over the wealth of knowledge from both structured and
unstructured sources to generate and prioritize hypotheses in order to automat-
ically interpret new data sets would provide a huge relief to this burden.

Developing systematic and reproducible methods first requires the formaliza-
tion and assembly of knowledge in a computable form. As an aside, many
techniques and methodologies in bioinformatics are biased towards the study
of cancer biology and focus on data and knowledge at the molecular level. In
this modeling strategy, often called the bottom-up approach, network and math-
ematical models are validated against the literature and experiments.

As we foray into the assembly of knowledge pertaining to new disease ar-
eas and associated clinical indications, we find much more focus on the process
level and phenotypic level. Because the links between genetics, molecular mech-
anisms, phenotypes, and clinical measurements are much less clear, they also
require the top-down approach to modeling, which first focuses on the larger
scales. While most modeling languages and data formats for assembling knowl-
edge are insufficient, the Biological Expression Language (BEL) possesses the
unique faculty to capture this multi-scale knowledge. It has the potential to
serve as a semantic integration platform on which the data measured across
scales can be integrated and analyzed.

The purpose of this work is to outline the first steps taken towards the building
of an automatic interpretation and hypothesis generation machine. The contents
of this thesis describe the framework built to parse and manipulate the knowl-
edge assemblies encoded in BEL, which enables BEL to act as a semantic inte-
gration layer for heterogeneous data and knowledge sources, the development
of a framework for automatic integration of relevant knowledge from structured
sources, and the development of schema-free analytical techniques to generate
data-driven hypothesis.

ix
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I N T R O D U C T I O N

1.1 motivation for formalizing and assembling knowledge

The final step of knowledge discovery requires scientists to interpret and eval-
uate the patterns produced by data mining of pre-processed and transformed
data [26]. Classically, this step is guided by the knowledge of the scientist per-
forming the interpretation. However, the quantity of knowledge the biomedical
domain is increasing at an unprecedented rate with no signs of deceleration [6].
Even with the assistance of information retrieval technologies, it is overwhelm-
ing, if not impossible, for individuals or groups of researchers to be knowledge-
able of the state-of-the-art in any but an incredibly specific topic.

The diversity of the content of the data in the biomedical domain is increas-
ing as multi-modal and multi-scale experiments are more commonly used to
investigate complex diseases. As experiments grow in complexity, so does the
intellectual and temporal burden of interpretation and evaluation. A support
system with the ability to reason over knowledge from both structured and un-
structured sources in order to automatically interpret new data sets and generate
hypotheses would provide a huge relief to this burden. The first step towards
building a support system is to formalize knowledge into a computable form.

The most relevant is unstructured knowledge in biomedical literature. While
previous efforts with manual curation have produced high-quality knowledge
bases (e.g, Universal Protein Resource (UniProt) [4], Braunschweig Enzyme Database
(BRENDA) [75], etc.), they also suffer from the burden of velocity and volume.
Advances in automated and semi-automated information and relation extraction
workflows are easing this burden. While the methods of information and rela-
tion extraction are not the focus of this thesis, a background on the schemata
and formats used to store their result is necessary to proceed.

1.2 formats for knowledge assembly

The most abstract level of knowledge, methodological knowledge, describes
the formalisms through which knowledge can be represented. The two most
common schemata for methodological knowledge are Resource Description For-
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2 introduction

Figure 1: The interplay of the three levels of knowledge abstraction in an example from the biological
domain.

mat Schema (RDFS) and Web Ontology Language (OWL). They provide the
faculty to describe the middle level, conceptual knowledge, which encodes the
classes, relations, and constraints relevant to a given domain. The most common
conceptual knowledge formats in the biomedical domain are Biological Pathway
Exchange Language (BioPAX), Systems Biology Markup Language (SBML), and
BEL. The most concrete level is factual knowledge, which consists of instances of
these classes and relationships [55]. These abstractions are illustrated in Figure
1.

1.2.1 Resource Description Framework Schema

Resource Description Format (RDF) uses triples of subjects, predicates, and
objects to represent relations between concepts. Each resource in a triplet is
backed by an Internationalized Resource Identifier (IRI). While its simple format
grants it huge expressive power, RDF lacks structure or domain specificity.

RDFS is a set of concepts and predicates appropriate for describing knowledge
at the conceptual level. Included are predicates for asserting class hierarchies
(rdfs:subClassOf), asserting memberships (rdf:type), describing the domain
and range of predicates (rdfs:domain, rdfs:range), and representing epistemo-
logical concepts such as classes, literals, and other data types [5].
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Figure 2: The expressive levels of OWL ontologies. Adapted from [55].

RDF and RDFS are supported by most popular programming languages with
packages to serialize and deserialize RDF in a variety of formats (e.g., eXtensible
Markup Language (XML), N-Triples, turtle, etc.) and reason over RDFS.

1.2.2 Web Ontology Language

Like RDFS, OWL consists of the methodological knowledge for modeling
domain-specific knowledge. Its most simple form, OWL Lite, enables the rep-
resentation of classes, their properties, relations, and constraints. The most
common form, OWL Descriptive Logic (DL), contains the additional expressive
power of descriptive logic over which inferences can be made. The most ex-
pressive form, OWL Full, removes the remaining restrictions on OWL DL but
paradoxically becomes undecidable and hinders automatic reasoning [55]. The
expressive levels of OWL are depicted in Figure 2.

OWL can be serialized to RDF, RDF/XML, OWL/XML, Manchester, and sev-
eral other formats. As an aside, the community of ontologists has historically
used the Java programming language because of the definitive OWL API [71]
package. Because many bioinformatics tools have been written in the Perl, R,
and Python scripting languages, they have been unable to easily make use of
the most powerful reasoners available. Development on Python packages (e.g.,
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OWLReady [72], OntoSpy [65], obonet [64], etc.) is beginning to enable Python
programmers to make full use of the abstract concepts introduced in knowledge
formalization.

1.2.3 Biological Pathways Exchange Language

BioPAX uses OWL to define the conceptual knowledge in the domain of bi-
ological pathways on the molecular and cellular level. Its ability to collect and
index metabolic, signaling, molecular, gene-regulatory, and genetic interaction
networks makes it an ideal exchange format for the growing number of pathway
databases with varying specificities in regards to target organisms and disease
indications [22].

This was realized with the aggregation of several pathway and interaction
databases (e.g., BindingDB [34], DrugBank [51], IntAct [70], Kyoto Encyclopedia
of Genes and Genomes (KEGG) [45], Reactome [25], WikiPathways [74], etc.) to
form the Pathway Commons Database [14]. Immediately, this database enabled
exploration of molecular interactions at the highest granularity. For example,
it powers the Enrichment Map Cytoscape Plugin [59] that was used to support
data-driven analysis in identifying medulloblastoma subgraphs based on intra-
tumoral heterogeneity [13].

1.2.4 Systems Biology Markup Language

SBML uses a completely custom formalism defined with eXtensible Markup
Language Schema (XMLS) to represent the dynamic and quantitative aspects of
biochemical reactions, signal transduction, and gene regulatory networks [38].
Like BioPAX, it provides the conceptual framework necessary to encode knowl-
edge in the biomedical domain. SBML also provides the basis for CellDesigner
[32], which has been incredibly successful in allowing biologists without infor-
matics backgrounds to diagram gene regulatory and biochemical networks as
well as import them to graphical ordinary differential equation solvers and sim-
ulation workflows.

1.2.5 Biological Expression Language

BEL supports the assembly of context-specific qualitative causal and correla-
tive relations between biological entities across multiple scales. Statements are
assembled and serialized in BEL Script with full provenance information includ-
ing namespace references, relation provenance (citation and evidence), and re-
lation metadata such as biological context (i.e. anatomy, cell, disease, etc.) [81].
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Figure 3: A BEL relation is encoded as a triplet containing a subject, a predicate, and an object. The
predicate can represents the type of relation while the subject and object can either represent the abundance
of molecular entities such as genes, proteins, chemicals, or more abstract concepts such as biochemical
reactions, biological processes, and pathologies. Identifiers for these concepts use references to external
namespaces (Figure 4B) to qualify their respective names. In this example, ChEBI [37] is used to qualify
chemicals and MeSH [78] for biological processes.

The schemata of BEL relations and BEL Scripts are depicted in Figures 3 and 4,
respectively.

Data-driven network analyses on BEL knowledge assemblies have been suc-
cessfully performed across a wide variety of clinical applications, including the
identification of upstream controllers in hepatocytes [21], mechanistic hypoth-
esis generation for drug response [50], and patient stratification [49] by using
over-representation analysis techniques developed such as RCR [12] and path-
way topological analytical methods such as Network Perturbation Amplitude
(NPA) [57].

BEL was developed by Selventa, a bioinformatics and computational biology
consulting firm, to support knowledge-driven analysis of data. In 2012, they
released the BEL v1.0 specification as an open standard through the OpenBEL
Consortium. However, the inability of BEL to express important concepts in
molecular biology (such as genetic variants) prompted the BEL v2.0 revision in
2014.

The foray into new disease areas and clinical indications has necessitated the
assembly of knowledge on wider scales from the genetic to the phenotypic and
population levels. While most modeling languages and data formats for assem-
bling knowledge are insufficient for such a task, BEL possesses the faculty for
capturing multi-scale knowledge.

In the same way BioPAX was successful at combining many molecular path-
way and interaction database, BEL has the potential to serve as a semantic
integration platform through which knowledge and data across scales can be
integrated and analyzed. BEL can be used to reason over the previously un-
tapped sources of chemogenomic and chemical genetic information in the realm
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Figure 4: A BEL Script contains three sections: A) the document metadata section provides provenance
information such as the name, version, and author; B) the definitions section provides references to ex-
ternal resources that are used as identifiers and metadata in the relations section; and C) the relations
section contains BEL relations and their metadata: minimally including a citation and evidence with the
possibility to include additional information such as biological context (e.g. cell, anatomy, disease).
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of disease-disease, disease-protein, disease-chemical, and chemical-chemical net-
works.

Modeling interactions across scales is not without its issues. As biological
processes, pathologies, and phenotypes represent collections of molecular inter-
actions, they are prone to having excessive associative and correlative relations
to other biological entities. This biases typical graph mining algorithms that
rely on graph traversals to visit these types of nodes, and therefore produce
less meaningful results. While it is not within the scope of this thesis, there are
many solutions for addressing these issues whose complexities vary from simple
filtering to empirical traversal rules. or adding extra rules for traversals.

1.3 biological applications

1.3.1 NeuroMMSig

The work in this thesis was carried out in order to support the International
Medicine Initiative (IMI) [39] project, AETIONOMY [1]. The goal of this project
is to provide a taxonomy of neurodegenerative disease in order to support fur-
ther development of clinical and computational methods to identify patient sub-
groups and classify individuals accordingly.

The first step taken towards this goal was to encode the relevant knowledge
surrounding Alzheimer’s disease (AD), Parkinson’s disease (PD), and Epilepsy
in BEL [48]. Next, a taxonomy of candidate mechanisms was curated in the Mul-
timodal Mechanistic Signatures for Neurodegenerative Diseases (NeuroMMSig)
Knowledge Base and annotated to these knowledge assemblies [23]. These candi-
date mechanisms contain multiple causal pathways, correlative and associative
relations, as well as other related information and are most appropriately named
"subgraphs."
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M O T I VAT I O N & O U T L I N E

2.1 motivation

The overarching purpose of this master’s thesis is to outline the first steps
taken towards building a generally reusable, automatic interpretation and hy-
pothesis generation machine.

While many analyses, including those previously referenced, can successfully
aid scientists in interpretation of data, each are developed with specific data sets,
knowledge assemblies, or application scenarios in mind. Those that were devel-
oped using schemata that lacked the generalized multi-scale and multi-modal
(schema-free) integration enabled by BEL could have potentially disregarded rel-
evant and important knowledge.

2.2 outline

The first section of this thesis describes the PyBEL, the framework built to
parse and manipulate BEL Script and resulting knowledge assemblies. The fol-
lowing section describes the development the Bio2BEL data integration frame-
work and the beginning of a cross-scale data integration project similar to Path-
way Commons. The final section describes the development of algorithms for
analyzing the robustness of knowledge assemblies, preprocessing techniques,
and ultimately, proposes a reusable, general, schema-free analytical technique
that generates hypotheses with knowledge-driven analyses of data.

9
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P Y B E L

3.1 survey of current technologies

While there exist several software packages for BioPAX and SBML, the ecosys-
tem of open-source software for BEL is much more limited.

3.1.1 OpenBEL Framework

With its publication of the BEL v1.0 specification as an open standard, the
OpenBEL Consortium released the OpenBEL Framework [67] ; a Java framework
for parsing BEL v1.0 documents and its companion Cytoscape plugin [66] for
network visualizations.

3.1.2 bel.rb

Ongoing development slowed [68] as the focus of OpenBEL development
shifted towards bel.rb [8]; a Ruby tool for parsing and transforming BEL v1.0
Script to RDF. Additionally, there is only limited community support through
GitHub and the proposed channel on Gitter.

Neither of the previously mentioned softwares provide explicitly documented
support for this revision; and the aging codebase of the OpenBEL Framework
and the generally low usage of Ruby in the bioinformatics community provide
little incentive for updates.

3.2 motivation

There is an unmet need for publicly available, easily installable, stable, facile
software that parses modern BEL and provides programmatic access to a data
container that enables the resulting network to be extended, queried, manip-
ulated, analyzed, and visualized. Furthermore, a converter between common
data formats is needed to enable re-usability and interoperability between gen-
eral and BEL-specific software for network analysis and visualization. This chap-

11



12 pybel

Figure 5: The PyBEL software package consists of five main parts: (1) the data container, (2) the parser
and validator, (3) the network database, (4) the data converter, and (5) visualization. Arrows represent
the direction of the flow of data between components. Together, these components provide a framework for
developing tools for exploration and analytics.

ter presents PyBEL, a Python language software package designed to fulfill each
of these needs.

3.3 software architecture

Development of the PyBEL software package adheres to a component-based
software architecture. The schematic view in Figure 5 illustrates how data flows
between components. components interact to build an integrated environment
for working with networks encoded in BEL Script.

3.3.1 Network Data Container

While a graph refers to an abstraction for a set of objects (i.e. nodes) and their
relations (i.e. edges), its instantiation in a real-world application is often called
a network. PyBEL implements a directed multigraph (i.e. a graph whose edges
have directionality and any given pair of nodes may have multiple edges) that
maps the biological entities and concepts in the subjects and objects of BEL re-
lations to nodes in a network and their relations, with corresponding metadata,
to edges. It extends the MultiDiGraph class from NetworkX, a Python package
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for manipulation of networks [36], to enable users direct access to their suite
of network algorithms and provide additional tools to develop them into bio-
logically meaningful analyses. While no-SQL database systems like Neo4J [61]
are also able to store and make increasingly complicated queries over networks,
they inherently lack the extensibility of data structures native to programming
languages like Python that can be extended and directly manipulated.

Additional information can be annotated on each of the node, edge, and graph
levels. This can allow of the integration of tabular information (i.e. differential
gene expression on nodes or IC50 values for edges representing inhibition exper-
iments of chemicals on enzymes). Network-level annotations allows for storage
of all relevant provenance information related to curation and namespace def-
initions in order to enable semantic data integration with other network and
tabular data sources.

3.3.2 Parsing and Validation

The parser combines components for performing tokenization, lexical analy-
sis, parsing, and validation on each of the three sections of BEL Script. Each
was implemented using the internal domain-specific language provided by the
PyParsing [77] Python package because of its exceptional speed, ease of writing
compared to regular expressions, and ability to register callbacks for different
language features. One callback annotates the entries in the document metadata
section to a network instance while another downloads and stores the resources
referenced in the definitions section. The relations section has two main call-
backs; one to maintain a list of current annotations from SET statements and
another to parse BEL relations (Figure 4C-D) and populate a network instance
with the corresponding nodes, edges, and their metadata from the current inter-
nal state.

While relations’ syntax is implicitly validated by the implementation of BEL in
PyParsing, the semantics of their subjects’ and objects’ identifiers are validated
with the references stored earlier. Finally, feedback is provided to users with
thorough error analyses to support thoughtful re-curation, which could lead to
more robust knowledge assemblies and enable more reproducible science.

3.3.3 Network and Edge Store

PyBEL uses a relational database to cache external namespaces and pre-parsed
networks to improve the speed of validation and access to data. While relational
databases are not generally appropriate for applying network algorithms, they
do provide indexing functionality that enables complicated queries and filters
over the nodes, edges, and metadata of increasingly large collections of networks.
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For example, this could enable the identification of intersections and potential
cross-talk in different disease-specific networks. SQLAlchemy [83], a popular
object-relational mapper, was used to maintain the database schema, transport
the results of queries to PyBEL, and enable integration of external relational
databases. Additionally, SQLAlchemy supports both fully-featured relational
database management systems as well as SQLite [84] for a zero-configuration
option.

3.3.4 Data Converter

Lossless conversion protocols were implemented for common file formats in-
cluding Node-Link JavaScript Object Notation (JSON), JSON Graph Interchange
Format (JFIG), CX, and Python Pickle as well as for multiple common database
formats including Structured Query Language (SQL), Neo4J, and the Network
Data Exchange (NDEx) (Table 1). Additional lossy exporters were provided to
Comma Separated Values (CSV), Simple Interaction Format (SIF), Excel, eXten-
sible Graph Markup and Modeling Language (XGMML), and Gene Set Enrich-
ment Analysis (GSEA) and Gene Set File Format (GRP) to facilitate usage in
other programs (Table 2). Notably, implementing a RDF converter was deferred
until improvements are made to the existing BEL to RDF mapping and its docu-
mentation [69].

3.3.5 Visualization

Networks can be exported to CSV, SIF, XGMML, or CX for visualization in
Cytoscape [29] or uploaded to NDEx [76] to take advantage of its viewer and
simple query interface. Alternatively, PyBEL provides an interactive network ex-
plorer and visualizer that is tailored to BEL networks (appropriate node coloring,
metadata pop-ups, etc.) that can be directly embedded as HyperText Markup
Language (HTML) in email, Jupyter Notebook [47], or a web application. For
example, it has already been used to produce visualizations in the NeuroMMSig
web server [23]. Figures 6-8 present the Alzheimer’s Disease Knowledge Assem-
bly Wnt Signaling Subgraph from NeuroMMSig in three different visualizations.

The visualization system from PyBEL has been built in a modular way so it
can be integrated in other applications. The underlying Javascript and HTML
are written with the Jinja templating language [42] and exposed via Python func-
tions that can be integrated in Python code or exposed through a RESTful Ap-
plication Programming Interface (API). There is ongoing work to enable users to
easily visually explore the results of the Biological Expression Language Infor-
mation Extraction Workflow (BELIEF) [54] and Integrated Dynamical Reasoner
and Assembler (INDRA) [40] text mining pipelines. Other projects, such as the
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Table 1: Multiple lossless converters are provided to common file formats and databases. Full descriptions
of the programmatic API can be found at http://pybel.readthedocs.io/en/latest/io.html

Format Usage

BEL Script Output to BEL scripts results in upgrade of statements from BEL
v1.0 and a standardized formatting.

Binary Using Python’s pickle module, pre-parsed BEL Script can be
stored as binary data for fast loading, storage in databases, and
transfer via network protocols.

Node-
Link

Node-Link [62] is the standard JSON format for many web-
based network visualization tools, including D3.js [18]. Output
is facilitated by standard code provided by NetworkX.

JGIF JFIG [43] is defined by a schema that is nearly a proper subset
of the Node Link format. Conversion with this format provides
compatibility with other software and repositories, such as the
Causal Biological Network Database [86].

CX CX [17] is an aspect-oriented network interchange format en-
coded in JSON with a format inspired by the JSON-LD [44] en-
coding of RDF. It is primarily used by the NDEx and more recent
versions of Cytoscape.

NDEx PyBEL contains wraps the NDEx Python client [60] for seamless
upload/download to the NDEx in the CX format.

SQL SQLAlchemy is used to make abstract queries over the nodes
and edges of a collection of networks.

Neo4J Neo4J is a graph database that enables complex graph queries
with the Cypher querying language.
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Figure 6: Visualization of the Wnt Signaling Subgraph from the NeuroMMSig Alzheimer’s Disease
Knowledge Assembly with Cytoscape provides extensive styling and rudimentary access to the node and
edge properties stored in PyBEL. Cytoscape also provides some network analytics functions.
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Table 2: Exporters to lossy and irretrievable formats are provided to promote usability in other programs.

Format Usage

CSV, SIF,
and Excel

CSV, SIF, and Excel all consist of an edge list with interaction
types that are suited for viewing in Excel or Cytoscape.

XGMML XGMML [90] supersedes Graph Markup Language (GML) by
adding support for both node and edge annotations. Its name
derives from its encoding in XML. It can be directly imported to
Cytoscape for viewing.

HTML Interactive visualizations can be produced using JSON export
and D3.js. They can be embedded directly in Jupyter Notebook.

GSEA This export option outputs a list of genes in the GRP format for
use with the Broad Institute’s GSEA platform [85].

Figure 7: Visualization of the Wnt Signaling Subgraph from the NeuroMMSig Alzheimer’s Disease
Knowledge Assembly with NDEx allows users to easily share their networks.
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Figure 8: Visualization of the Wnt Signaling Subgraph from the NeuroMMSig Alzheimer’s Disease
Knowledge Assembly with Jupyter Notebook allows for embedding within scientific workflows.
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Figure 9: The NeuroMMSig Mechanism Enrichment server uses PyBEL visualization to present a down-
stream mechanism to the user following multi-modal mechanism enrichment.

development of a web service to display and explore a knowledge base assem-
bled for an ongoing project related to Post-traumatic Stress Disorder (PTSD) are
also currently using the PyBEL visualization to embed specific knowledge as-
semblies with other clinical and molecular data. Figures 9-11 present the PyBEL
visualization embedded in other applications that are already in the prototype
or release stage of development.

3.4 remarks on development

3.4.1 Software Stability

This software was developed under a test-driven development cycle, where
extensive unit tests were written to check the stability of the many functions that
make up the five components of the software. The procedure for running these
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Figure 10: As an addition to the NeuroMMSig Mechanism Enrichment Server, bayesian modeling tech-
niques are used to analyze the dependencies of clinical variables, mapped to NeuroMMSig subgraphs, and
displayed in a multi-scale exploration environment using the underlying PyBEL visualization system.

tests is encoded with the tox build system that is automatically run by Travis
Continuous Integration (CI) (https://travis-ci.org) upon each push of code to
GitHub (https://github.com). The coverage of these tests are then assessed by
CodeCov (https://codecov.io).

3.4.2 Installation and Usability

Travis CI also integrates with the "tags and releases" aspect of GitHub to en-
able automatic build of the code and distribution through PyPI (https://pypi.org),
the main packaging system for Python. All relevant information for installation
is bundled in the package, so it can be installed with zero configuration on any
computer using pip install pybel from any terminal, on any operating sys-
tem, running any modern version of the Python programming language. Finally,
the documentation for PyBEL is included in its repository and is automatically
built with Sphinx (http://www.sphinx-doc.org) and uploaded to Read the Docs
(https://readthedocs.org) upon each push of code to GitHub.
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Figure 11: The PyBEL visualization system is linked to the tree browser from the Ontology Lookup
Service [16] and connectivity viewer from The Virtual Brain [53] to allow for interactive exploration of
the knowledge related to given brain regions as well as their undirected connectivity or directed projection
information.
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3.5 discussion

3.5.1 Extensibility of Syntax

Even after its v2.0 update, the BEL specification does not yet explicitly specify
many concepts in molecular biology such as epigenetic information (e.g. methy-
lation), which is a crucial part of modeling of complex diseases [41]. The in-
evitability of language evolution prompted the development of the parser in
modules so that new syntax could be proposed and implemented quickly. As
a proof of concept, a syntax extension for gene modifications is included in the
package by default.

3.5.2 Extensibility of Resources

Historically, BEL namespace files have used a custom definition format; but
the creation and maintenance of terminologies in the biological domain has
tended towards the usage of OWL. Furthermore, many namespaces such as db-
SNP [80] are growing too large to enumerate during semantic integration and
validation. The modular architecture of the PyBEL parser enables easy imple-
mentation of new definition file formats, external validation services, or even
alternative schemes for definition statements to address these issues.

PyBEL introduces syntax for defining namespaces with a consistent pattern
using a regular expression to overcome this issue. For these namespaces, seman-
tic validation can be perform in post-processing against the underlying database.
The dbSNP namespace can be defined with a syntax familiar to BEL annotation
definitions with regular expressions as follows:
DEFINE NAMESPACE dbSNP AS PATTERN "rs[0-9]+"

3.5.3 Integration of Data

While BEL is often used to formalize knowledge curated from unstructured
sources, PyBEL also accommodates the integration of knowledge from struc-
tured sources. Existing solutions for resolving equivalences across namespaces
have relied on the creation and external hosting of extensive lookup tables. Py-
BEL could take inspiration from the OWL format and enable equivalency infor-
mation to be directly integrated in a network as edges.

Again, the parser is extensible enough to implement dedicated syntax for
equivalency similar to the standard syntax for gene orthology (orthologousTo),
protein complex component definitions (hasComponent), and protein family mem-
bership (hasMember). This is realized with the addition of the equivalentTo rela-
tion, which can be reasoned over using network algorithms directly or collapsed
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for further use. For example, the fragments produced by amyloid cleavage can
be represented in BEL with either a protein and fragment combination, or re-
ferred directly by its entry in ChEBI [37]. With the PyBEL extension, this can be
written as:

p(HGNC:APP, frag(672_713)) equivalentTo \
a(CHEBI:"amyloid-beta polypeptide 40")
The hierarchical information encoded in ontologies can also be directly inte-

grated. For example, integrating the ChEBI Ontology could allow for reasoning
over its multiple functional and structural hierarchies of chemical space. These
entries can enable mechanistically-focused chemical repurposing strategies by
identifying links between chemical inhibitors in disparate regions of a network
[37].

3.5.4 Inaccessible Formats

Data locked away in other formats such as BioPax and SBML cannot be ac-
cessed by PyBEL currently. Development of knowledge assemblers, like INDRA
[40], provide support for import of many formats. PyBEL will enable the import
of BEL documents much more quickly, and ultimately enable the export of SBML.
In the future, it would also be useful to develop additional interchange tools for
BioPAX to BEL, but this is a large task that will be limited by the expressibility
of each language and the difficult development of a two-way mapping. There is
ongoing work on integrating PyBEL and INDRA to immediately make accessi-
ble the text mining results from REACH [87] and TRIPS [2] as well as the prior
knowledge sources assembled for the INDRA workflow. Future work is planned
to integrate the BELIEF workflow [54] as well.

3.5.5 Comparison with Previous Software

After describing PyBEL, Table 3 is used to make a direct feature comparison
with the OpenBEL Framework and bel.rb. While the OpenBEL Framework has
some features that are still in develop in the PyBEL ecosystem (see following
section on Bio2BEL), PyBEL is the most feature complete and robust option.

3.6 conclusions

3.6.1 Applications in Re-curation

The NeuroMMSig knowledge assemblies for AD and PD had many syntac-
tic, semantic, and biological errors. The PyBEL parser provides a much more
useful error analysis than previous software and immediately enabled fixes for



24 pybel

Table 3: A comparison of the available software for processing BEL. *To the best of our abil-
ity, we were unable to install bel.rb using its documentation and unsuccessful in solicit-
ing support through GitHub or OpenBEL’s proposed channel of communication on Gitter
(https://gitter.im/OpenBEL/chat)

OpenBEL Frame-
work

bel.rb PyBEL

Programming Lan-
guage

Java Ruby Python

Latest Official Re-
lease

2015-06-11 1.1.2 - 2017-05-22 0.9.0 - 2017-09-19

Installation Not available on
package manager
such as brew or
apt-get

gem install bel* pip install pybel

BEL 2.0 Support No Experimental Yes
Testing Yes Yes Yes
Continuous Integra-
tion

No Yes Yes

Code Quality Testing No No CodeCov and Code
Climate

Documentation and
Tutorials

No Yes Yes

Command Line Inter-
face

Yes Yes Yes

Import BEL Script BEL Script, RDF See Table 1

Export KAM Navigator RDF See Tables 1 and 2

Visualization KAM Navigator None See Figures 6-8
Namespace Formats BELNS BELNS BELNS and OWL
Compilation Process Orthology, Named

Complexes, Central
Dogma

None Central Dogma

Explicit Equivalence
Handling

Yes No No

Extensible Parser No No Yes
Programmatic API No No Yes
Caching Mechanism Yes Yes Yes
Internal DSL No Yes No
Ongoing Develop-
ment

No No Yes



3.6 conclusions 25

100 101 102 103

IllegalAnnotationValueWarning

InvalidFunctionSemantic

InvalidPubMedIdentifierWarning

MalformedTranslocationWarning

MissingAnnotationKeyWarning

MissingCitationException

MissingNamespaceNameWarning

MissingNamespaceRegexWarning

MissingSupportWarning

NakedNameWarning

NestedRelationWarning

PlaceholderAminoAcidWarning

PyBelParserWarning

UndefinedAnnotationWarning

UndefinedNamespaceWarning

VersionFormatWarning AD Current

AD v3.0

PD Current

PD v1.1

Figure 12: The re-curation efforts of the Alzheimer’s disease and Parkinson’s disease knowledge assemblies
showed significant progress after the introduction of PyBEL.

many of the syntactic and semantic errors. During this process, a preliminary
version control process was implemented to track progress over time. With less
than 200 commits and over a period of six months, 5327 of the 8030 errors in
the Alzheimer’s disease knowledge assembly and 465 of the 1171 errors in the
Parkinson’s disease knowledge assembly were fixed (Figure 12).

Biological problems are much more difficult to detect a priori, but later sec-
tions in this thesis describe how integrating data from external sources could
allow for an assessment of the "biological grammar" underlying the knowledge
assemblies. Future integration with INDRA can provide the first steps in auto-
matic analysis of biological correctness using its belief propagation algorithm for
quantifying the reliability of statements based on consensus across text mining
and a-priori knowledge bases.

3.6.2 Applications in Psychology and Psychiatry

PyBEL has already been used to stretch the boundaries of manual curation.
Projects dealing with anxiety and anhedonia have led to the curation of neuronal
connectivity and projects. Other projects dealing with PTSD and Traumatic Brain
Injury (TBI) have led to a much larger focus on the curation of biological pro-
cesses, phenotypes, and clinical measurements. The limited information on the
molecular level combine with the focus on non-molecular clinical measurements
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in these domains motivates the need for integration of new a-priori knowledge
bases to assist in the contextualization of new information, critical assessment of
the completeness and correctness of new curated material, and new analytical
techniques.

3.6.3 Future Work

Integrating chemical information systems like the Comparative Toxicogenomics
Database [20] could enable a previously envisioned chemoinformatics platform
[24] backed by the mechanistic knowledge encoded in BEL networks. The exten-
sibility of the network data container enables the integration of relations that are
not explicitly defined by BEL, such as weighted chemical similarities, for devel-
opment of novel algorithms and analyses as well as enables the implementation
of previously published algorithms for more general use.
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B I O 2 B E L

4.1 background on bio2rdf

An outline was proposed as early as 1995 for integrating data in the biomedi-
cal domain that involved transforming data into a common model, aligning se-
mantically related objects, integrating schemata, and federating data [19]. RDF
has the faculty to address these concerns, and were ultimately realized with the
Bio2RDF project, in which multiple biological databases and knowledge bases
were serialized to RDF for later integration [7].

As stated before, the expressive power of RDF is counteracted by its lack of do-
main specificity. While it can be used as an interchange format, it still requires
converters to formats for which analytical pipelines have already been devel-
oped. Furthermore, the suite of conversion scripts are written in PHP, which
has very little traction in the bioinformatics community and therefore is difficult
to integrate in pre-existing workflows. This section presents Bio2BEL: a project
similar to Bio2RDF for the BEL community to directly the usage of the other
tools presented in this thesis.

4.2 generation of namespace resources

There are multiple granularities at which a terminology can be modeled. At
the lowest is a vocabulary, in which each term is enumerated and described.
Higher is a taxonomy, in which hierarchical relations are expressed. At the high-
est granularity is an ontology, which contains arbitrary and complex relations.

While it is not the primary goal of knowledge modeling, ontologies can also
represent cross-references that connect multiple terminologies that describe the
same entities. The most common model for representing ontologies is OWL
which most commonly uses RDF as an interchange format, whose main goal is
to provide a platform for semantic integration. This immediately provides on-
tologies with the facilities developed to support semantic data integration. This
is very important in the biomedical domain as rapidly progressing technology
frequently results in new experiments and new language for describing biologi-
cal phenomena.

27
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Table 4: Data sources for which reusable BEL namespace conversion scripts have been implemented

Data Source Description

FlyBase Drosophila genes and gene products
HGNC Human genes and gene products
HGNC Gene Families Human gene families
InterPro Protein families, domains, and binding sites
ChEBML Experiments describing the effects of chemicals on

proteins
MeSH Psychiatry and Psy-
chology

A taxonomy of concepts from psychiatry and psychol-
ogy

dbSNP Single-Nucleotide Polymorphism (SNP)s
miRBase Premature and mature Micro-Ribonucleic Acid

(miRNA) sequences

OWL, and a more domain-specific variant, Open Biomedical Ontology (OBO),
have been widely adopted by the biomedical domain to structure terminologies
and enable semantic integration across knowledge and data sources [82]. Multi-
ple tools for storing, disseminating, and searching them have been including the
Brenda Ontology Explorer [11], BioPortal [89], OBO Foundry [82], and the EBI
Ontology Lookup Service (OLS) [16].

The semantics of the BEL require entities to be identified with a name linked
to a namespace. The original framework for handling BEL Scripts also provided
scripts for gathering different resources (vocabularies, taxonomies, and ontolo-
gies) in varying formats and assembling them in a specific namespace file format.
One of the advantages of BEL over other systems biology modeling languages is
its ability to model knowledge across modes and scales. As it is used to describe
new phenotypes, such as the domain of psychiatry, new namespaces must be
identified and formatted. Below, two approaches for building new namespaces
are described.

4.2.1 Direct Generation of Namespace Resources

The OpenBEL Consortium distributed several scripts that included directives
and parsers for acquiring data from multiple knowledge bases and databases
and structuring them to BEL namespaces in a reproducible manner. Often, this
is necessary to acquire identifiers that are not exported to a standard format like
OWL or OBO. Additional scripts were written to improve the reliability of these
generators and to convert new namespaces summarized in Table 4.
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Table 5: Ontologies deployed in the OLS from which BEL namespaces have been generated.

Ontology Description

Human Phenotype Ontology Clinical and phenotypic abnormalities
Uber Anatomy Ontology Anatomical structures in animals

Table 6: Data sources from which ontologies have been generated, deployed, and used to generate BEL
namespaces.

Data Source Description

UniProt Proteins

miRBase Premature and mature miRNA sequences

4.2.2 Indirect Generation of Namespace Resources

BEL namespaces are not generally useful for curators or text-mining platforms
to perform named entity recognition. The data sources from which BEL names-
paces can be derived often have other rich information (synonyms, hierarchies,
and cross-references) that could be structured into an ontology that is more gen-
erally useful.

Some of the namespaces that were originally generated directly by the Open-
BEL Framework are derived from ontologies. Since the development of this
pipeline, the aforementioned services for hosting ontologies have gained popu-
larity. The OLS provides a programmatic API from which the terms in a given
ontology can be accessed. The source code for this service is available and can
be hosted locally.

The indirect approach uses data sources to build ontologies that can be hosted
in OLS then to use the OLS API to iterate over the terms’ labels in order to easily
convert any ontology to a BEL namespace with a reusable procedure. Already,
namespaces in Table 5 have been generated from the publicly available OLS.

As a proof of concept, the data sources in Table 6 have been downloaded
and converted to an ontology, deployed on a local OLS instance, and converted
indirectly to a BEL namespace.

4.2.3 Distribution of Namespace Resources

Each method for downloading, parsing, and generating a namespace is stored
as its own self-contained Python package. They share common methods for
interacting with the OLS in the ols-client package. Finally, resources are uni-
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formly deployed and distributed with Artifactory [30]. Common code for up-
loading to Artifactory is included in PyBEL-Tools.

4.2.4 Discussion Related to Resources

Not all data sources are amenable to the indirect approach. Infamously, the
MeSH is a thorough data source that was not developed to accomplish the same
goals as ontologies. Therefore, it is incredibly difficult task to map its data
to an ontology. Furthermore, the implicit solution to semantic integration that
relied on ontologies is not generally applicable. In these scenarios, it is not only
necessary to generate a namespace, but also mappings. Previous efforts have
relied on lookup tables, but like BEL namespaces, are not generally reusable.

Using ontologies to build namespaces implicitly solves the technical problem
of mapping terms from one terminology to another, but this does not necessar-
ily generally solve the biological problem. Mappings between identifiers may
have different validity for different applications. While it is often convenient
for biological literature to name proteins by their genes’ names, this can create
ambiguity for genes that produce multiple products in the cases of differential
splicing and post-transcriptional modification. For example, in some simplistic
domains, it is possible to map HGNC gene identifiers to UniProt protein iden-
tifiers. However, when modeling complex phenotypes that rely on this mecha-
nism, this mapping cannot be used.

4.3 knowledge integration

Knowledge can be represented as statements each consisting of a subject, pred-
icate, and object. As knowledge is assembled, the object of one statement may
be the subject of another. This process implicitly builds a knowledge network
over which reasoning and inference may be performed. Two general purpose
technical solutions for storing statements are relational databases and RDF.

A relational database allows for similar statements, often ones with the same
types of subjects, same types of objects, and same predicates, to be stored in ta-
bles. Each row represents one statement, where the subject and the object are as-
signed a column and additional columns can represent the metadata associated
with the assertion of the statement. While their structure is explicitly, relational
databases have the disadvantage of becoming large and complicated when rep-
resenting many types of knowledge. As a result, many knowledge bases are
disparate. Further, the management systems underlying relational databases are
generally not amenable to federation.

One solution to this problem is to expose the database through APIs that
can be queried from external services to enable federation of multiple relational
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databases. A popular solution is the Representational State Transfer (REST) API,
but to integrate many data sources might require multiple queries, which can
put a strain on technical systems. A newer solution is Graph Query Language
(GraphQL), which attempts to provide an abstraction layer between relational
databases and REST APIs to handle federation more efficiently.

An alternative medium to relational databases entirely is RDF, in which all
statements are explicitly stored as triplets of subject, predicate, and object in
an alternative database management system called a triple-store. The underly-
ing data can be exposed with a SPARQL Protocol and RDF Query Language
(SPARQL) endpoint, which enables the statements to be queried. Further, it
directly enables path queries to enable reasoning and inference. RDF was devel-
oped to enable federation directly using SPARQL endpoints from multiple data
sources. It also does not need a well-defined schema in the same way a rela-
tional database does. This is both a blessing and a curse; new data can be added
quickly, but the lack of structure makes it both technically and pedagogically
difficult to make pointed queries.

4.3.1 Utility of Biological Expression Language

Because relational databases and RDF are general solution for storing knowl-
edge, they are unaware of the domain-specific needs of knowledge representa-
tion and storage in the biomedical domain. Among other modeling languages
and formats for systems and networks biology, BEL is an apt medium for stor-
ing structured knowledge extracted from the literature because it enables infer-
ence and reasoning over varying topologies of the resulting networks and also
a serialization format for structured knowledge bases to enable integration in
a domain-specific medium. It is a solution to overcoming the technical limits
imposed by RDF on representing relation metadata and the technical limits im-
posed by relational databases in constructing and querying networks.

BEL is commonly used for manual curation in a specific disease area. Inte-
grating prior knowledge sources to these networks provides context not only to
assist the curator in their understanding of the biological knowledge surround-
ing their curation, but also allows for automatic enrichment, improved reasoning,
and a further step towards building a support system for data interpretation.

Among the most easily integrable structured knowledge formats in BEL are
taxonomies, ontologies, and networks. Taxonomies and ontologies directly pro-
vide the facility for reasoning and inferences of new knowledge. Networks, such
as bipartite SNP-disease, chemical-gene, or gene-pathway networks, can be di-
rectly integrated in BEL. Even networks created by statistical calculations can
be added to BEL networks to investigate their explanatory power. For example,
the eQTL Single Nucleotide Polymorphism Ontology (eSNPO) provides statis-
tical associations between SNPs and Gene Ontology (GO) biological processes.
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Table 7: Knowledge bases for which reproducible BEL serialization procedures were implemented.

Knowledge
Source

Type Description

ChEMBL Relational
Database

Chemical inhibition and
binding of enzymes

HGNC Or-
thologies

Tabular Gene orthology map-
pings between human,
rat, and mouse

BKMS-react Tabular Biochemical reactions
and catalytic enzymes

eSNPO Tabular Relations between SNPs
and biological processes

While these don’t have mechanistic support, they can provide additional insight
and allow for more informed hypothesis triage in network analysis. Here, two
approaches for serializing structured knowledge sources to BEL are described.

4.3.2 Direct Generation of Knowledge Resources

While structured, the formats in which knowledge is stored varies by domain.
For example, ChEBML [33] is distributed as a relational database, while BKMS-
react [79] uses a table with specifically formatted entries to describe reactions.
For each source in Table 7, a reusable Python library that downloads, structures,
queries, and serializes BEL was developed.

4.3.3 Indirect Generation of Knowledge Resources

Serializing knowledge to BEL is not generally useful outside of the domain of
tools directed towards BEL networks. The knowledge bases from which BEL can
be derived often have other rich information that is not appropriate for BEL that
could be structured in other knowledge representation models such as OWL.
For these cases, the parser and serializer were separated in order to build an in-
termediate relational database. These have the added benefit of being queryable
through SQL or exposed with RESTful APIs for large data sets across networks.
Finally, these database schemes have the additional benefit of providing a for-
malism for the knowledge before serializing it to BEL. As a proof of concept,
packages have been developed for the parsing, database storage, and BEL serial-
ization for sources listed in Table 8.
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Table 8: Knowledge bases for which an intermediate solution for downloading, parsing, and modeling data
were used to facilitate the development of reproducible BEL serialization procedures.

Knowledge
Source

Type Description

Comparative
Toxicoge-
nomics
Database

XML Relations between
chemicals, genes, path-
ways, and phenotypes

InterPro Hierarchy Protein Family Hierar-
chies

HGNC Gene
Families

Tabular Gene Family Hierar-
chies

4.3.4 Discussion Related to Knowledge Resources

Many more knowledge bases and data sources exist that could be integrated
with BEL. For example, miRNA-Target interactions stored in mirTarBase [15]
could provide insight to the complex regulation patterns that applies to com-
plex diseases. Other sources of knowledge could be extracted from data-mining
pipelines, such as linkage disequilibrium block analysis, gene co-expression anal-
ysis, and perturbagen-based differential gene expression analyses to provide ad-
ditional support to elucidate mechanistic insight from increasingly complicated
and large knowledge assemblies.
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The following section describes a subset of the functions and workflows that
have been developed to assess, enrich, and analyze knowledge assemblies parsed
by PyBEL. All code is made available as open source and stored in the PyBEL
Tools repository (https://github.com/pybel/pybel-tools) on GitHub. Like Py-
BEL, it is thoroughly documented as to allow for the community to build upon
it.

5.1 critical assessment of networks

Before knowledge assemblies can be used to help interpret data, their validity
and robustness must first be quantified. While many dimensions can be explored
during this quantification, this section places focus on the identification of bio-
logical network motifs that indicate inconsistencies in the knowledge assembly.
Network motifs have been studied in the context of transcriptional and phospho-
rylation networks [3] and already provide insight to the biological activity. As
knowledge networks add the heterogeneity of edges including correlative rela-
tionships, many new motifs must be identified and their effects inferred. This
section presents the first portions of a taxonomy for network motifs in knowl-
edge assemblies, interpret their effects, and use them assess the NeuroMMSig
knowledge base.

5.1.1 A Taxonomy of Knowledge Assembly Motifs

The first and most simple motif is a contradictory pair. These occur when
there exist multiple edges between a given source and target that have conflicting
relations, such as increases vs. decreases. However, contradictory pairs are not
canonically invalid. They may arise from the effects of the biological context
under which different relations were observed. These cases must be carefully
considered.

There are many aspects that can be considered to resolve conflicts that cannot
be explained by different biological scenarios. First, the date of publication can

35
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be considered. The most recent publication is most likely to have made use of
other knowledge available to researchers, and be more right. Alternatively, if
many publications were made with conflicting views in a short amount of time,
the impact factor of the corresponding citations’ journals can be considered.

While there exists a single motif for identifying contradictory pairs, multiple
motifs comprise the set of contradictory triplets. The algorithms that identify
these triangles within a network come from a deep graph theoretic background
to identify logically inconsistent relations. Because BEL knowledge graphs con-
tain both causal and correlative relations, they can be analyzed jointly. The most
simple is a mutually unstable triplet, which occurs when entities A, B, and C all
negatively correlate with each other. Similarly, separately unstable triplets occur
when A positively correlates with both B and C, but B and C are negatively cor-
related. Three more triple types are identified where a mix of correlative and
causal relations do not match: increase mismatch triplets, decrease mismatch
triplets, and jens triplets.

Alternatively, stability analysis can be conducted to identify elements that are
likely to be regulated by other parts of a system. These elements are particularly
interesting because of the high impact that any given edge could have that con-
nects to it. There are two types of unstable pairs: chaotic pairs, where A and
B both increase each other and dampened pairs, where A and B both decrease
each other. The same logic extends to chaotic triplets and dampened triplets.
Interestingly, analyses of many knowledge assemblies seldom identified damp-
ened triplets; possibly indicating their biological novelty. Chaotic and dampened
cycles of length 4 and above are not identified, because the average number of
possible connections at those lengths makes qualitative biological interpretation
prohibitively difficult.

Table 9 presents statistics over the occurrence of various network motifs in the
three knowledge assemblies produced during the AETIONOMY project. While
each case, such as mutually unstable triples, might be interesting, this provides
direct insight into the large amount of effort necessary to investigate each unsta-
ble motif and motivates the further development of automated approaches for
quantifying the robustness of a given knowledge assembly.

5.1.2 Discussion

As data integration projects like Bio2BEL make more data accessible during
analysis, further plausibility and stability checks can be performed. One would
be to integrate the data from UniProt for each function and traverse the Gene
Ontology molecular function annotations to identify properly annotated activi-
ties and flag improperly annotated ones to be either proposed as new, or fixed.
Another example would be to check that protein and gene modifications are
annotated properly using UniProt and dbSNP, respectively. Adding additional
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Table 9: Stability analysis statistics over the AETIONOMY knowledge assemblies for Alzheimer’s disease,
Parkinson’s Disease, and Epilepsy. The ratios suggest that the relative counts of each network
motif are not similarly correlated with network size or density.

AD Knowl-
edge Assem-
bly v4.0.3

Epilepsy
Knowledge
Assembly
v1.1.2

PD Knowl-
edge Assem-
bly v1.1.1

Chaotic Pairs 56 12 16

Chaotic Triples 115 27 11

Contradictory Pairs 68 18 26

Dampened Pairs 7 2 4

Dampened Triples 1 0 2

Decrease Mismatch Triples 20 0 6

Increase Mismatch Triples 51 4 20

Jens Unstable Triples 657 153 85

Mutually Unstable Triples 2 0 7

Regulatory Pairs 19 9 15

Separately Unstable Triples 16 0 16
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checks using prior knowledge makes BEL curation much more accessible to cura-
tors with less biological knowledge and also text mining systems that currently
have less biological intuition.

5.2 survey of algorithms

Algorithms for analyzing pathways and networks can be categorized into
three main categories: Over Representation Analysis (ORA), Functional Class
Scoring (FCS), and Pathway Topology (PT) [46]. Over-representation analysis of-
ten focuses on the number of differentially expressed genes present or absent in
a gene set compared to chance, while functional class scoring is less susceptible
to large effects and considers the aggregate of groups of small effects. Path-
way topology finally considers the biological relations between members of the
pathway during analysis.

Furthermore, there is a distinction between methods that rely on the assump-
tion that protein activities are correlated with their corresponding Messenger
Ribonucleic Acid (mRNA)s’ expression changes (forward reasoning) versus the
effect that upstream controllers of mRNA expression have (backwards reasoning)
[57]

These algorithms have been developed for a wide variety of applications, data
formats, and graph types. While many are heterogeneous, below are the most
notable algorithms specific to networks from knowledge assemblies encoded in
BEL.

5.2.1 Reverse Causal Reasoning

Reverse causal reasoning (RCR) is an approach to identify the upstream con-
trollers of biological patterns measured in an experiment; often differential gene
expression experiments between healthy and diseased patients. First, large
knowledge assemblies are dissected into smaller hypothesis networks with one
upstream node with multiple outgoing causal relations to target nodes repre-
sented by the experimental data set. Each hypothesis network is scored by its
concordance between the observed up- and down-regulations of targets nodes
to the sign of the causal relation and by its richness, or the explanatory power
of the hypothesis network [12]. An example hypothesis network is shown in
Figure 13.

5.2.2 Network Perturbation Amplitude

While RCR gives preliminary insights to significant biological controllers, it
mostly ignores the topology of signaling, regulatory, and other causal networks
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Figure 13: An example hypothesis network. Target nodes are counted as correct if they have a decreasing
relationship and down-regulation, or an increasing relationship and up-regulation. Target nodes with
multiple conflicting relationships are marked as ambiguous. Finally, target nodes are counted as incorrect if
they have a mismatch between an increasing relationship and down-regulation, or a decreasing relationship
and up-regulation. Adapted from [12].

that can be represented in knowledge assemblies (Figure 14). The NPA measures
the aggregated effect explained by the controller layer with reference to a given
node with respect to their downstream nodes. Two complementary statistics for
the effect of permutations of the upstream layer and downstream layer allow for
further insight to the validity of NPAs as a hypothesis generation mechanism
[57].

5.2.3 Sampling of Spanning Trees

While NPA enables more informed analyses than RCR, its mathematical ba-
sis limits the topologies of knowledge networks that can be used to those with
causal consistency. In these networks, all paths from one node to another result
in the same aggregated effect of increases and decreases. An additional ap-
proach in Figure 15 for Sampling of Spanning Trees (SST) with random walkers
eliminates inconsistencies and can be aggregated over multiple trials to assign
NPA scores to networks that were otherwise inconsistent [88].
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Figure 14: Creation of hypothesis networks that accounts for the topology and interactions of upstream
controller layer with respect to a reference node A), their individual effects on the downstream layer B)
and their combine effect C). Adapted from [56].

Figure 15: An example decomposition of a small causally inconsistent network A) to its spanning trees
B)[88].
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5.2.4 Unsolved Issues

While these algorithms already provide significant insight, they still have un-
resolved issues. For example: they require prior definitions of the upstream
controller layer subnetworks; they do not address other exotic network motifs
such as contradictions; and they do not take advantage of the vast assembly
of correlative relationships. Further, there is generally a low coverage of nodes
present in data sets within knowledge assemblies.

As mentioned before, these algorithms were developed for domains (oncology,
immunology, etc.) that are rich in molecular data and mechanistic knowledge.
For disease areas such as neurodegenerative diseases, molecular data (e.g., mi-
croarray, Ribonucleic acid (RNA)-seq) are not often available for the most appli-
cable cells or tissues because of the practical difficulty of acquiring samples. It
follows that context-specific knowledge is also much more sparse; and inference
from other contexts (such as animal models) is much less reliable.

While backwards reasoning overcomes the issues with interpretation that are
posed by forwards reasoning, the insufficient knowledge and data in neurode-
generative diseases makes this revelation much less useful.

The experimental data available in for this field and other complex diseases are
often multi-modal and multi-scale, prompting the development of new methods.
Many of these experiments can only be connected to current knowledge assem-
bles through correlative relationships, such as the associations between single
nucleotide polymorphisms (SNPs) and clinical phenotypes such as neuroimag-
ing and gene expression.

5.3 a priori network augmentation

This section first describes pipelines that make biological knowledge assem-
blies more usable that rely on prior knowledge from the biomedical domain. Be-
fore developing analytical algorithms, it is first necessary to consider pipelines
that improve the features of currently existing networks. After, an algorithm
for generating upper layer controller networks is proposed and an alternative
heat-diffusion method that is better able to accommodate heterogeneous experi-
mental data.

5.3.1 Connecting Disconnected Components

The GABA Subgraph in the Alzheimer’s disease knowledge assembly has five
disconnected components. While these can be inspected manually and the gaps
can be filled, this becomes a daunting task for the set of 128 subgraphs in Neu-
roMMSig. PyBEL can be used to build queries that automatically expand and
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enrich graphs in order to create an environment in which disparate knowledge
can be assembled to elucidate mechanistic understanding. Below, a procedure
for filling in the holes in a subgraph is outlined.

First, the central dogma is inferred. This ensures the existence of the corre-
sponding RNA for proteins, and the corresponding genes for each RNA and
miRNA. Doing so already connects the subgraph containing the relations de-
scribing how estradiol affects the expression of GABRA4 and GABR3 mRNA
[63] to another component that describes the functional impact of their trans-
lated proteins on other proteins and biological processes. After this process,
four components remain.

Next, unqualified edges are enriched. This method reasons over nodes for
which assertions can automatically be presumed. Relationships describing the
different types of variations on genes and proteins (epigenetics, mutations, and
post-translational modifications) are able to connect the GRIN2B node that is im-
portant in one large component to the phosphorylated GRIN2B node in another
network. Because BEL represents knowledge assemblies and not necessarily
mechanistic models, these pieces of information can come from multiple cura-
tors without mutual knowledge. After this process, two components remain.

Of the two components, there is one large component and one small compo-
nent, consisting only of cAMP catabolic process and GABBR2. While they are
not yet automatic, further knowledge-based approaches can be used to connect
GABBR2 to GABBR1 in the large component using resources like HUGO Gene
Nomenclature Committee (HGNC) Gene Families [35], InterPro [27], or PFAM
[28]. This is valuable because hierarchical knowledge sources like these can
be used to reason over the network, like using the knowledge that GABBR2 de-
creases the cAMP catabolic process [58] to assert that GABBR1, the other member
of the GPCR family 3, GABA-B receptor (IPR001828), shares the same activity.
While this knowledge does not exist in the assembly, literature search also notes
several connections between GABBR1 and cAMP signalling [31, 73].

5.3.2 Subgraph Membership Inference

While connecting components is important, it would also be useful to identify
and add edges that should belong to the GABA subgraph but do not already.
The first method would be to identify and edges occurring between nodes in
the subgraph that are not already present, and add them. Next, this procedure
can be continued to identify nodes that have edges to multiple nodes already
in the subgraph. To reduce false positives, nodes added this way must both be
the target of a causal relationship from a node in the subgraph and also have a
causal effect on another node in the subgraph.

Finally, to improve viewability, two additional filters are provided. First, a fil-
ter for pathologies is used to remove them. This is useful since most pathologies
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are "super nodes" in knowledge assemblies and have numerous and often un-
informative correlative relationships. Next, the central dogma is collapsed such
that genes, RNAs, and proteins are all shown as one node. While this limits
the mechanistic explanatory power of a visualization, it removes a significant
amount of visual clutter.

5.3.3 Pipeline Building

It may be reasonable for viewing purpose to additionally collapse nodes rep-
resenting modifications to their reference node as well. The submodule
pybel-tools.mutation contains large library of functions that can be chained
together either manually, or with a pipeline builder to promote reusability by
allowing uses to save their workflows and reuse them.

5.4 data driven analysis

5.4.1 Unbiased Candidate Mechanism Generation

There are many terms used to describe portions of biological networks in-
cluding pathways, mechanisms, subgraphs. They all comprise of individual
interactions that accumulate to a more complex function. Often, an interaction
may be part of multiple of these features. Knowledge bases like KEGG, Reac-
tome, and WikiPathways organize interactions into pathways; but they all suffer
from bias in the literature and from the knowledge of their curators. This sec-
tion presents an algorithm for generating unbiased candidate mechanisms from
a given knowledge assembly. The method is then compared to the NeuroMM-
Sig knowledge base to identify its ability to reproduce dogmatic subgraphs and
identify areas of the underlying knowledge assemblies that have yet to be anno-
tated.

In biomedical knowledge assembly across scales, biological processes repre-
sent entire subnetworks of causal interactions through both time and space. The
NeuroMMSig knowledge base captures associative, correlative, and causal rela-
tionships between genes and gene products and biological processes directly in
BEL. Because biological processes implicitly represent functional subnetworks,
they are an appealing starting point for automatically unbiased generating can-
didate mechanisms to be used by other algorithms.

The upstream controllers of biological processes provide direct insight to their
functional impacts across scales. Therefore, the simple algorithm for generat-
ing candidate mechanisms that are unbiased by the dogmatic takes the causally
upstream controllers of a biological process, their upstream controllers, and all
internal causal edges between them as a candidate mechanism. This method is
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Figure 16: The landscape of biological process membership shows that there are both biological processes
that appear in few and many subgraphs, and subgraphs with few and many biological processes.

thresholded at an expansion of two neighborhoods, but could easily be modified
to choose larger or smaller lengths.

5.4.2 Comparison to NeuroMMSig Knowledge Base

This method was applied to the NeuroMMSig Alzheimer’s disease knowledge
assembly for each biological process. After, the resulting candidate mechanisms
are compared to the NeuroMMSig subgraphs. First, the landscape of biological
process membership in each subgraph is summarized with Figure 16.

This landscape can also be used to annotate new candidate mechanisms to
the dogmatic subgraphs in NeuroMMSig to allow for more relevant mechanistic
analysis. The annotation of further biological processes to subgraphs (Figure
17) can also allow the enrichment strategies in the NeuroMMSig Mechanism
Enrichment Server to perform enrichment over nodes corresponding to concepts
on other scales.

5.4.3 Candidate Mechanism Perturbation Amplitude

All of the previous ideas from this thesis cumulate in the ability to devise and
implement an algorithm for data-driven, schema-free analysis of networks. Af-
ter networks are curated, parsed, enriched, checked for robustness, and triaged
into unbiased candidate mechanisms, they can finally be analyzed. This sec-
tion presents the candidate mechanism perturbation amplitude algorithm. It
addresses the issues posed by previous algorithms with more complex random-
ized approaches and ultimately enables analysis of new modes of data by using
a classical schema-free analytical technique similar inspired by other heat diffu-
sion analyses in networks biology [9, 52]. The example presented below includes
the use of differential gene expression analysis from Alzheimer’s disease applied
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Figure 17: The landscape of candidate mechanism and NeuroMMSig overlap, calculated by node overlap.
The dark horizontal section directly identifies biological processes that are not annotated in any NeuroMM-
Sig subgraphs. This implicates their huge explanatory potential since they are outside the research dogma
in Alzheimer’s disease research.
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to the unbiased candidate mechanisms generated from the NeuroMMSig knowl-
edge assembly.

In this algorithm, heat is applied to the nodes based on the data set. For
the differential gene expression experiment, the log-fold-change values were
used instead of the corrected p-values to allow for the effects of up- and down-
regulation to be admitted in the analysis. Finally, heat diffusion was run with
the constraint that decreases edges cause the sign of the heat to be flipped. Be-
cause of the construction of unbiased candidate mechanisms, all heat will flow
towards their seed biological process nodes. The amount of heat on the bio-
logical process node after heat diffusion stops becomes the score for the whole
candidate mechanism.

Because heat always flows towards the biological process node, it is possible
to remove leaf nodes (nodes with no incoming edges) after each step, since their
heat will never change.

The issue of inconsistent causal networks addressed by the SST algorithm does
not affect heat diffusion algorithms since it can quantify multiple conflicting
pathways. However, it does not address the possibility of contradictory edges,
for example, when A increases B and A decreases B are both true. A random
sampling approach is used on networks with contradictory edges and aggregate
statistics over multiple trials are used to assess the robustness of the scores as a
function of the topology of the underlying candidate mechanisms.

Finally, this algorithm can be tuned to allow the use of correlative relation-
ships. Because many multi-scale and multi-modal data are often measured with
correlations to molecular features, this enables experiments to be run using SNP
or brain imaging features, whose experiments often measure their correlation
with the activity of gene products.

5.4.4 Application Scenario

This algorithm was applied with the Alzheimer’s disease knowledge assem-
bly to assist in interpretation of the differential gene expression experiments
from GSE28146 [10]. This trial classified patients into three disease progres-
sion stages: early, moderate, and severe. While BEL has inherent limits in its
temporal expressivity, interpreting data that has an inherent temporal ordering
helps overcome this limit. The results for each time point can be accessed at
https://github.com/pybel/pybel-notebooks/blob/master/results/time_series_cmpa.csv.

A hierarchical clustering (Figure 18) was performed using the Pearson cor-
relation coefficient to group biological processes whose observed perturbation
changed similarly through time. The dendrogram suggested there were between
4-6 groups of similarly varying processes. In order to make an interpretation, the
original values are displayed in a parallel coordinate plot (Figure 19) with colors
corresponding to their classes.
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Figure 18: A hierarchical clustering over the Pearson correlation of each candidate mechanism score
through time suggests there are 4-6 discernible classes.
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Figure 19: Parallel coordinate plot of all candidate mechanism with coloring by cluster shows the different
progressions of biological processes.

In figure 19, class 1 (green) is consists of biological processes that continu-
ally increase throughout the progression of the disease. Notably, it contains the
inflammatory response. Class 3 (purple) contains biological processes that de-
crease from the early to moderate stage then increase again. This refers to cell
death and neuron death processes. Class 4 includes processes that are initially
down-regulated then become less regulated, including mitochondrion-related
pathways. Class 2 (yellow) includes processes that do not become disregulated
until the severe onset of disease, and have much more variety from glutamate
secretion to ion homeostatic processes to metabolic processes. The remaining
class does not show significant regulation in any of the disease stages.

While Alzheimer’s disease must be studied with respect to its progression
over time, this analysis can provide insight directly to measurements performed
on a single time series. Those results provide a ranking that prioritizes the most
up- and down-regulated biological processes as a function of the observed data.
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C O N C L U S I O N A N D O U T L O O K

This master’s thesis was originally motivated by the desire to automatically
interpret data sets and generate hypotheses using prior knowledge. While work-
ing towards that goal, it was necessary to develop an entire computational infras-
tructure for BEL. That infrastructure was extended with reusable components to
integrate prior knowledge from other sources in order to model biology at the
finest granularity possible. Next, a framework for testing the validity and ro-
bustness of those knowledge assemblies was implemented and applied to the
NeuroMMSig knowledge base. Finally, algorithms for extracting meaningful
subnetworks were applied to enable schema-free and multi-modal analysis using
a heat diffusion algorithm. Using this workflow, it is now possible to interpret
multi-modal data sets and generate hypotheses in a truly automated fashion.
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