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Abstract

A footnote in OpenlIntro Statistics, 3rd Edition', Section 5.5.2, Analy-
sis of Variance (ANOVA), relates an identity for the sum of squared errors

(SSE).
SSE = SST—SSG

= (m—1si+(n2—1)s3+- + (nx — )si

where s? is the sample variance for group i among k groups. This note

fleshes out this identity in more detail.

1 Definitions

We define the following notation and definitions.

n — The number of elements in a sample.

k — The number of groups in the sample.

n; — The number of elements in group j, n = 25:1 n;.
x; — The i*" element in the sample.

T — The sample average.

Z; — The average of elements in group j.
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The sample variance for group j.

SST — Sum of Squares Total = Y"1 (z; — Z)*.

SSG — Sum of Squares between Groups = 25:1 n;(Z; — T)

SSE — Sum of Squared Errors = SST - SSG

L Available at https://www.openintro.org/stat/textbook.php
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2 Group Sample Variance

The sample group variance is calculated like any other sample variance, except
that the calculation is restricted to a group. We'll designate x;; as element
¢ in group j. Using this notation, the formula for the group average is z; =

nij Z?il xij. SO
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This is often used in the calulations that follow. For the group variance of group
j, we have
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We will use this identity in the following section.

3 Sum of Square Total

Let G; = {&i;,4 = 1...n;} be the subset of {z;} for each group so that
GiNG; =0 when i # j and U?zl G is the whole sample. The sum of squares
total can then be expressed as

n;j

SST=> (zi—2)% =) (vi; — ) (4)
i=1

j=11i=1

The point of regrouping the sums is to combine terms in the sum of squared
errors expression.



4 Sum of Squared Errors

Now we can express the sum of squared errors as

SSE = SST —SSG
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In step (5) we used the SST identity in (4). In step (6) we group average identity
in (2). In the last step, we used the group variance expression from (3).



