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Abstract. a well known trade, arbitrage has been practiced by renowned
traders all over the years, amongst them my preferred one, mr. jesse liv-
ermore. triangular arbitrage, a slightly more sophisticated variation, is
well known in forex. a more recent subclass of such assets, cryptocur-
rencies provide a whole new arena for this trade in the form of open
digital exchange direct access to retail. under this spot, in this paper,
we discuss the triangular arbitrage and present an algorithm for trading
it profitably. the algorithm assumes that the best book offers of each
market can be retrieved seamlessly from an exchange, and they’re made
available in data arrays readily accessible by the algorithm code. an ex-
ample is provided to illustrate the algorithm, later on a generic version
is obtained. scalability, implementation and performance issues are dis-
cussed alongside the design.

Keywords: cryptocurrency · arbitrage · algorithm.

1 introduction

bitcoin started in 2008, but the efforts for a decentralized digital currency
date back to the early 80’s [1]. although a lot of applications can be derived or be
based on such digital assets [2], not much other than coin trading has occurred
so far.

regardless which road such technologies might take, they’re likely to provide
a wide set of assets for trading. it is our understanding that this is enough to
allow arbitrage opportunities between them.

1.1 active and passive trading

on our own taxonomy, arbitrage belongs to passive trading category.
on active trading, the trader’s view on the market is expressed by a position

he assumes, in the side (buying side or selling side), asset and size of his choice,
provided there is market liquidity for that.

arbitrage, on the other hand, is much less of trading than observing. the
trader (or rather, the observer) relentlessly scans different markets for price
inefficiencies. they come in the form of price differences between supply and de-
mand that could afford an intermediary party between them. the most common
expression of such is a buyer bidding for an asset in one market more than a
seller on another is asking for it. that’s an arbitrage opportunity if the asset carry
cost between these markets is worth the price difference at the traded volume.
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note that in this example the trader has not chosen the asset, the quantity nor
the price difference on the trade. he only picks up (or declines) an opportunity
that the market offers him. that’s why we call it passive trading.

1.2 arbitrage

such price difference can occur in the same market but in different timing,
for instance, the corn price might differ between the spot and a future contract
in the same or different locations, the so called cash-and-carry arbitrage [3]. a
price difference might occur simultaneously in different exchanges, for instance,
the same cryptocurrency pair is traded at different prices in different exchanges.
that could be exploited in the so called pair trading [4].

lastly, in the same exchange, three pairs composed by three different coins
might be simultaneously being traded at prices that are discrepant enough to
be exploited with profit, in the so called triangular arbitrage. we’ll dive on its
specifics through out this paper.

as a last word before we move on, arbitrage opportunities are short lived. thus,
it’s all about timing. and to prevent you from future losses, in a metaphorical
sense, if an arbitrage opportunity lives long, many who trade it won’t.

in the next section we detail triangular arbitrage on the context of cryptocur-
rencies. we then derive its profit conditions.

2 triangular arbitrage in cryptocurrencies

perhaps a good starting question is why is it called triangular? the spoiler is
it’s more about he number three than of that geometric shape.

in short, triangular arbitrage consists of the following; from an initial balance
on a given currency, to sell it for another, to sell the latter for yet another one,
and finally to exchange it back to the first one. when all’s said and done, you
end up with more. let’s try it with an example.

OKEX [5] is a cryptocurrency exchange, with its own blockchain. it has issued
it’s own coin and a dollar-pegged coin, one of the so called stable coins. let us
assume you have an account on this exchange and that you trade on the spot
market. in this context, say

1. you have an initial balance of ETH. you sell it for USDK1

2. with your USDK balance, you buy OKB2

3. you sell your OKB back for ETH.

there are specific market circumstances, which we’ll cover now, when this trade
sequence grants you an end balance of ETH higher than the initial one.

first and foremost, we address how is this even possible.

1 stable coin issued by OKEX
2 token issued by OK blockchain foundation
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2.1 the origin of price inefficiencies

the first thing to be noted is that balances are accounted in coins, while coins
are traded in pairs. so, in the aforementioned example, you start with a single
balance of ETH. any change in this balance that is not a deposit or a withdrawal,
will necessarily be a trade3.

each pair trades at a price, and in a free market assumption, prices float
freely to accommodate supply and demand. moves in the price of one pair might
not necessarily, and not simultaneously propagate to other related pairs. for
example, a surge in OKB/USDK price might not immediately reflect in a surge
on the price of OKB/ETH pair. in case there’s a demand for OKB, one can
expect a steadily surge in all OKB pairs, possibly occurring in decreasing order
of liquidity. in case it is caused by a move out of stable coins, it is likely to have
no impact on OKB/ETH price.

this pair specific, yet market wide, price discover mechanism is the origin of
temporarily price inefficiencies that can give rise to arbitrage opportunities.

2.2 the reason for a three pairs setup

it might sound obvious to some why to arbitrate between three pairs, but
there’s no practical difference between a forgotten knowledge and a never learnt
one.

a simpler setup might be two coins only, where from the initial balance of
ETH we sell it for USDK, and then buy back our ETH. the reason it won’t
work is that two coins constitute a single pair, that you are either buying or
selling. if you buy and sell simultaneously the same pair, at best you’ll end up
with the same amount of ETH. yes, you can never profit by buying and selling
simultaneously the same pair in the same exchange.

the only way you can profit from a single pair trading is by opening a tem-
porarily position (for much longer than an arbitrage would require) in one side
(long or short), wait for prices to move favourably, and then closing it. that is
position trading, which might range from scalping [6] to trend trading [7].

thus, you need a third coin, and that gives rise to a three pairs setup. trading
through them allows price inefficiencies to be exploited profitably. one might
argue that it could, then, be more than three pairs. yes, it could. however, each
trade adds to the cost and to the risk. so, the shortest the path, the quickest the
trip, the best.

we revisit our example, computing it with exchange data.

3 an algorithm for triangular arbitrage

from an initial ETH balance, we’re interested in increasing it. we, thus, resort
to triangular arbitrage which will be traded in three rounds. each round occurs
in a specific market. in this example, these markets are

3 distributions and airdrops are outruled for simplicity.
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1. OKB/ETH, where we’re buyers, i.e. we buy OKB with ETH.

2. OKB/USDK, where we’re sellers, i.e. we sell our OKB for USDK.

3. ETH/USDK, where we’re buyers, i.e. we buy ETH with USDK.

in other words, we’ll run the triple ETH/OKB/USDK clockwise, and we start
by defining some variables

balance.ETH[0], initial balance of ETH

balance.ETH[1], balance of ETH at end of round #1

position.ETH[1], ETH position committed in round #1

position.OKB, intermediary OKB position in a given round

position.OKB.market, best bid/ask size for OKB

ask.OKB_ETH[0], best ask for OKB/ETH pair

ask.OKB_ETH[0][0], price of best ask for OKB/ETH pair, in ETH

ask.OKB_ETH[0][1], amount of best ask for OKB/ETH pair, in OKB

fee_taker, worst case fee paid on a spot trade

coef_profit, minimal profitability percentage in decimals.

the first round of trades is placed in the OKB/ETH market, where we’re
interested in buying OKB with ETH. the following data is retrieved from the
books

position.ETH[1].market = ask.OKB_ETH[0][0] * ask.OKB_ETH[0][1]

position.ETH[1] = min(balance.ETH[0], position.ETH[1].market)

position.OKB = ask.OKB_ETH[0][1]

* position.ETH[0] / position.ETH[0].market

the OKB position assumed in this trade is capped by the amount of the best ask.
it is as well dependent on the available balance of ETH. this is why we compare
the amount of ETH demanded in this trade (position.ETH[1].market) with
the current balance to determine how much (percentually) we’ll take from the
offered OKB amount.

based on this data, an order is issued with the following parameters

type = limited

side = buy

market = OKB/ETH

price = ask.OKB_ETH[0][0]

amount = position.OKB

once the order is completely executed, the balances become

balance.ETH[1] = balance.ETH[0] - position.ETH[1]

balance.OKB[1] = balance.OKB[0]

+ position.OKB * (1 - fee_taker)

balance.USDK[1] = balance.USDK[0]
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note that the resulting OKB balance is smaller than the OKB position assumed
in the trade. the difference is the fees due to the exchange for trade completion.

the second round of trades is placed in the OKB/USDK market, where we’re
interested in selling OKB for USDK. based on the data we’ve already gathered
and processed, only complementary data is retrieved now

position.OKB = min(balance.OKB[1], bid.OKB_USDK[0][1])

note that in the previous round, we’ve compared position.ETH[1].market with
balance.ETH[0] to determine position.ETH[0], while in this round, we com-
pare balance.OKB[1] directly with bid.OKB_USDK[0][1]. in other words, in
OKB/ETH market, the ETH position depends on the product between the best
price paid by OKB and its corresponding amount. in the OKB/USDK market,
the OKB position depends on the best bid amount, solely. this difference occurs
because in the first case we’re buyers so we want to know how much money we
need to afford the purchased amount, while in the second we’re sellers, so the
position is straight forward.

in this round, an order is issued with the following parameters

type = limited

side = sell

market = OKB/USDK

price = bid.OKB_USDK[0][0]

amount = position.OKB

once the order is completely executed, the balances become

balance.ETH[2] = balance.ETH[1]

balance.OKB[2] = balance.OKB[1] - position.OKB

balance.USDK[2] = balance.USDK[1]

+ bid.OKB_USDK[0][0] * position.OKB

* (1 - fee_taker)

the third round of trades is placed in the ETH/USDK market, where we’re
interested in buying ETH with USDK. the following data is retrieved

position.USDK.market = ask.ETH_USDK[0][0] * ask_ETH_USDK[0][1]

position.USDK = min(balance.USDK[2], position.USDK.market)

position.ETH[3] = ask.ETH_USDK[0][1]

* position.USDK / position.USDK.market

and a final order is issued with the following parameters

type = limited

side = buy

market = ETH/USDK

price = ask.ETH_USDK[0][0]

amount = position.ETH[3]
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once the order is completely executed, the final balances become

balance.ETH[3] = balance.ETH[2]

+ position.ETH[3] * (1 - fee_taker)

balance.OKB[3] = balance.OKB[2]

balance.USDK[3] = balance.USDK[2] - position.USDK

and the trade is concluded. this is the first result of this paper.

3.1 clock, anticlock senses

it is worth noting that the trade sequence occurred in the so called clockwise,
ETH/OKB/USDK order. the reverse sense ETH/USDK/OKB could have been
chosen. the differences would be regarding the order we visit each market and our
side in them. while trading clockwise, we start as buyers on OKB/ETH market,
in anticlockwise, we start as sellers on ETH/USDK market. thus, in the former
we look for asks, and in the latter we look for bids.

we believe this is enough to straighten forward this algorithm in the anti-
clockwise sense. we now proceed to present the profit conditions in either sense
for this same example.

3.2 profit conditions

if the trade was profitable, we get

balance.ETH[3] > balance.ETH[0]

which can be expanded as

balance.ETH[2] + position.ETH[3]

* (1 - fee_taker) > balance.ETH[0]

balance.ETH[1] + position.ETH[3]

* (1 - fee_taker) > balance.ETH[0]

balance.ETH[0] - position.ETH[1]

+ position.ETH[3] * (1 - fee_taker) > balance.ETH[0]

which can be represented in terms of ETH positions as

position.ETH[3] * (1 - fee_taker) > position.ETH[1]

it is our interest, however, to know whether the trade is likely to be profitable,
upfront. we thus assume we’re trading without limitations from coin balances,
or bids and asks amounts. that allows us to estimate the maximum obtainable
profit. we then are lead to the following condition4

bid.OKB_USDK[0][0] * (1 - fee_taker)^3

>= ask.OKB_ETH[0][0] * ask.ETH_USDK[0][0] * (1 + coef_profit)

4 the complete development of this condition is not included in this paper.
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this is a sufficient condition for profit clockwise. an equivalent anticlockwise
condition would be

bid.ETH_USDK[0][0] * bid.OKB_ETH[0][0] * (1 - fee_taker)^3

>= ask.OKB_USDK[0][0] * (1 + coef_profit)

some takeaways

– these are sufficient conditions, so most of the time none is likely to be
true.

– they are mutually exclusive. never, ever both will be simultaneously true.
if so happens your code is wrong.

– inherent imperfection. as there’s nothing bounding the triple pairs to-
gether, one can always expect an inequality, even in a no profit, no fee sce-
nario. the imbalance might not be sufficiently high to cover for the fees, or
to cross the threshold profit for risk taking.

– zero sum game. the imbalance clockwise is opposite to the imbalance oth-
erwise at the same instant or market conditions. and in the end, the love you
take is equal to the love you made.

this is the second result of this paper.

4 generalized profit conditions

in order to exploit market opportunities, trading cannot be confined to a
single or few triples. however, scaling up the process shouldn’t take along the
costs. understanding the rationale behind the profit conditions might allow for
generalizations, which in turn might grant us scale economy.

4.1 a prologue on generalization

is it even possible? with some contour conditions, yes. we’ll address them as
we evolve in the generalization.

good sense restrictions on coins and exchange.

– the triple should be tradable. pick for instance, the triple BTC/LTC/XRP.
you cannot trade them as we did in previous section. why? there’s no way
you can sell LTC directly in XRP or to buy XRP directly in LTC5. you
need first to sell your LTC for USDK, BTC, ETH or OKB. then you get to
buy your XRP. that just added another coin to the triple, making them a
quadruple. no way.

– hold on to what is worth. buy into a company because you want to own it,
not because you want the stock to go up, warren buffet’s quote. although its
execution is quite personal, it wipes out most of the existing coins, nowadays.

5 as of the writing of this paper, there is no XRP or LTC market in OKEX.
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– there’s no good deal in a bad marketplace. choose carefully your ex-
change.

based on the aforementioned guidelines, we reach the following coins set for the
current time being6.

– BTC, ETH, XRP, LTC, EOS as hold
– USDK, OKB, BCH, XMR as additional coins for the trading set
– OKEX as the exchange for performing the trades

it remains to address how to make this coin set tradable in the context of trian-
gular arbitrage.

4.2 on pairing the coins

naturally, the larger the set of coins considered, the greater the trading pos-
sibilities, and hopefully the larger the profits. at the same time, not all the
combinations exist. we consider these aspects in the sequel.

triple tradability conditions. as just posed, BTC/LTC/XRP cannot be
traded. the reason is the current impossibility to trade LTC directly for XRP
within the exchange spot markets. in other words, there’s no LTC/XRP or
XRP/LTC pairs.

this impossibility highlights directly the solution. there should be no adjacent
coins comprising an untradable pair. conversely, adjacent coins should comprise
tradable pairs.

to further enlight the tradability of a pair, we segregate the coins against
which, other coins are priced. in other words, coins that are base currencies in
markets. to implement this segregation, we suggest a boolean valued property,
marketness. to ease for the reader, we classify coins as marketness or mar-
ketless (for those whose marketness property is false).

two coins are not directly tradable if both are marketless. as a consequence,
a triple can have at most one marketless coin, regardless the order.

we propose the notation M, M̄ for marketness, marketless, respectively. trad-
able triples are thus (M, M, M), or (M̄, M, M), or (M, M̄, M), or (M, M, M̄). these are the
stereotypes of tradable triples. as a byproduct, we’re now able to pair M̄, M coins,
but what about M/M pairs?

pairing marketness coins. marketness coins require a score to differentiate
them, so pairing can be done through the same concept of M̄, M pairs. for instance,
both BTC and ETH are M coins, but there’s no BTC/ETH pair, only ETH/BTC.
same for USDK and BTC. there’s no USDK/BTC pair, only BTC/USDK. this
restriction must be captured in a score. we then build the pairs according to it.

the score we propose is headed by stable coins, followed by BTC, ETH, then
exchange coin. one could expect that stable coins should be ordered by liquidity,

6 today is 2019/09/21
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but exchanges may have their own criteria for listing their stable coin pairs. for
two M coins in a pair, the lower indexed coin7 is the base currency8, and the
other is the quote currency9.

notice that there’s no relation between adjacency in a triple, and the position
of coins in the pair traded. for instance, a triple (A,B,C) can imply in a pair A/B
or B/A, and that is determined by their marketness property; not by the A, B
position in the triple. A preceding B in the triple means only that a balance in A
coin shall be converted to a balance in B coin; that might be achieved by either
selling A/B or buying B/A.

according to the proposed score we define our array of M coins as

arrayMarketness = [USDK, BTC, ETC, OKB]

the pertinence of a coin to the above array is the value of its marketness property,
and its array position set its score.

we’ll represent as M, m, n, three marketness coins with increasing index value,
i.e. decreasing marketness score.

we now revisit the tradable triples of previous subsection, expanding their
combinations according to the marketness property and score values of the coins.

– (M, M, M); leads to the following combinations (M, m, n), (m, M, n), (n, M, m).

– (M, M, M̄); leads to (M, m, M̄), (m, M, M̄).

– (M, M̄, M); is covered by the above, anticlockwise.

– (M̄, M, M); has only (M̄, M, m) as unaddressed combination.

in the matter of coin pairing, n and M̄ are always quote currencies in their respec-
tive pairs. moreover, in their respective triples they hold the lower marketness.
in this context, we combine the triples where n and M̄ have the same position,
reducing the combinations to

(M, m, M̄ + n), (m, M, M̄ + n), (M̄ + n, M, m).

it simplifies the ruling, for as for each triple with an M̄ coin, there will be an
exact one where in its place there’s an n coin. both are ruled by the same profit
conditions and trading sequence. we thus get the following pairs, clockwise.

– (M, m, M̄ + n); m/M, {M̄ + n}/m, {M̄ + n}/M
– (m, M, M̄ + n); m/M, {M̄ + n}/M, {M̄ + n}/m
– (M̄ + n, M, m); {M̄ + n}/M, m/M, {M̄ + n}/m

this pairs will be traded clockwise and anticlockwise. note that the first pair in
the first and second items is m/M. however, in the first item we’re in the buy side
because we’re exchanging M for m. the other is vice versa.

7 the lower the index, the higher the marketness of the coin.
8 the subsequent coin in a pair, i.e. Y in X/Y.
9 the preceding coin in the pair, i.e. X in X/Y.
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4.3 on trading the pairs

in section 4.2 we’ve paired the coins in triples. we’ll now get their buy/sell
side by abiding to: adjacent coins in decreasing order of marketness lead to a
buy order, and vice versa.

– (M, m, M̄ + n); clockwise; buy, buy, sell. anticlockwise; buy, sell, sell.
– (m, M, M̄ + n); clockwise; sell, buy, sell. anticlockwise; buy, sell, buy.
– (M̄ + n, M, m); clockwise; sell, buy, buy. anticlockwise; sell, sell, buy.

combining the previous subsection pairs with the above orders we get the fol-
lowing sequence.

– (M, m, M̄ + n);
• clockwise; buy m/M, buy {M̄ + n}/m, sell {M̄ + n}/M
• anticlockwise; buy {M̄ + n}/M, sell {M̄ + n}/m, sell m/M

– (m, M, M̄ + n);
• clockwise; sell m/M, buy {M̄ + n}/M, sell {M̄ + n}/m
• anticlockwise; buy {M̄ + n}/m, sell {M̄ + n}/M, buy m/M

– (M̄ + n, M, m);
• clockwise; sell {M̄ + n}/M, buy m/M, buy {M̄ + n}/m
• anticlockwise; sell {M̄ + n}/m, sell m/M, buy {M̄ + n}/M

4.4 generalized profit conditions

based on the developments here presented so far, it is straightforward (al-
though worksome) to derive generalized profit conditions for our resulting set of
triples.

– (M, m, M̄ + n);
• clockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3
>= ask.m_M[0][0] * ask.{M̄+n}_m[0][0] * (1 + coef_profit)

• anticlockwise;
bid.{M̄+n}_m[0][0] * bid.m_M[0][0] * (1 - fee_taker)^3
>= ask.{M̄+n}_M[0][0] * (1 + coef_profit)

– (m, M, M̄ + n);
• clockwise;
bid.m_M[0][0] * bid.{M̄+n}_m[0][0] * (1 - fee_taker)^3
>= ask.{M̄+n}_M[0][0] * (1 + coef_profit)

• anticlockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3
>= ask.{M̄+n}_m[0][0] * ask.m_M[0][0] * (1 + coef_profit)

– (M̄ + n, M, m);
• clockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3
>= ask.m_M[0][0] * ask.{M̄+n}_m[0][0] * (1 + coef_profit)

• anticlockwise;
bid.{M̄+n}_m[0][0] * bid.m_M[0][0] * (1 - fee_taker)^3
>= ask.{M̄+n}_M[0][0] * (1 + coef_profit)

this is the third result of this paper. in the next section we’ll rank them by profit.
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5 triples profit rank

naturally, from all the triples he’s interested, a trader is likely to prefer the
most profitable he’s able to trade right now.

the conditions obtained in section 4.4 are boolean and sufficient to ensure
desired profit is achieved, whether clockwise or reversed. they’re not suited for
ranking. we, thus, rearrange those conditions to allow for ranking.

– (M, m, M̄ + n);
• clockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

- ask.m_M[0][0] * ask.{M̄+n}_m[0][0] = εM
• anticlockwise;
bid.{M̄+n}_m[0][0] * bid.m_M[0][0] * (1 - fee_taker)^3

- ask.{M̄+n}_M[0][0] = εM
– (m, M, M̄ + n);
• clockwise;
bid.m_M[0][0] * bid.{M̄+n}_m[0][0] * (1 - fee_taker)^3

- ask.{M̄+n}_M[0][0] = εm
• anticlockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

- ask.{M̄+n}_m[0][0] * ask.m_M[0][0] = εm
– (M̄ + n, M, m);
• clockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

- ask.m_M[0][0] * ask.{M̄+n}_m[0][0] = εM̄+n

• anticlockwise;
bid.{M̄+n}_m[0][0] * bid.m_M[0][0] * (1 - fee_taker)^3

- ask.{M̄+n}_M[0][0] = εM̄+n

previous conditions were rearranged above in equations, where the profit mea-
sured in the initial coin (M, m or M̄+n) is represented by the respective ε.

this equations allow for ranking the profit within triples with the same initial
coin, for instance, ETH. the reason is straightforward. you cannot compare a
profit in ETH with a profit in XRP, for example. it is enough, though, for single
coin holders. in this case they’ll test the conditions whose triple starts with the
same marketness of their coin.

traders with a broader portfolio, usually want more. we, thus, need to rear-
range these equations to account for percentual profit,

– (M, m, M̄ + n);
• clockwise;
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

/ ask.m_M[0][0] / ask.{M̄+n}_m[0][0] = θ
• anticlockwise;
bid.{M̄+n}_m[0][0] * bid.m_M[0][0]

* (1 - fee_taker)^3 / ask.{M̄+n}_M[0][0] = θ
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– (m, M, M̄ + n);

• clockwise;

bid.m_M[0][0] * bid.{M̄+n}_m[0][0]

* (1 - fee_taker)^3 / ask.{M̄+n}_M[0][0] = θ

• anticlockwise;

bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

/ ask.{M̄+n}_m[0][0] / ask.m_M[0][0] = θ

– (M̄ + n, M, m);

• clockwise;

bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

/ ask.m_M[0][0] / ask.{M̄+n}_m[0][0] = θ

• anticlockwise;

bid.{M̄+n}_m[0][0] * bid.m_M[0][0]

* (1 - fee_taker)^3 / ask.{M̄+n}_M[0][0] = θ

now you can compare any tradable triple from your coin set by ranking the
obtained θ. this is our fourth, and perhaps more relevant, result of this paper.

5.1 an epilogue on generalization

we now present an algorithm for trading a set of coins according to our latest
generalized profit conditions. we illustrate it with our coin set of section 4.1.

define a set of coins. segregate those you’d hold.

arrayCoins.hold = [BTC, ETH, XRP, LTC, EOS]

arrayCoins.additional = [USDK, OKB, BCH, XMR]

segregate them in marketness. those with these property, index them by it.

arrayCoins.marketness = [USDK, BTC, ETH, OKB]

arrayCoins.marketless = [XRP, LTC, EOS, BCH, XMR]

build the triples. all triples as (coin1, coin2, coin3)

1. coin1 is in arrayCoins.hold

2. if coin1 is in arrayCoins.marketless, then coin2 is from arrayCoins.marketness.
coin2 is different of coin1.

3. if coin1 or coin2 is in arrayCoins.marketless, then coin3 is from arrayCoins.marketness.
coin3 is different of coin1 and coin2.
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group the triples per stereotype. stereotypes are as follows

– (M, m, M̄ + n);
– (m, M, M̄ + n);
– (M̄ + n, M, m);

for simplicity we’ll represent M̄ + n solely by n, without any loss of generality.

arrayTriples.Mmn = [[USDK, BTC, ETH], [BTC, ETH, XRP], ...]

arrayTriples.mMn = [[BTC, USDK, ETH], [ETH, BTC, XRP], ...]

arrayTriples.nMm = [[ETH, USDK, BTC], [XRP, BTC, ETH], ...]

this is a one time procedure for any new set of coins. on it, all triples matching
each stereotype are generated and cast in their respective array. the arrays re-
main valid as far as the set remains unchanged. they can be stored in a file, an
a trading process reads them at its start up.

apply the profit conditions on the triples. within each array.

1. for triples within arrayTriples.Mmn replace (M, m, M̄ + n) by (coin1, coin2, coin3)
so that condition
bid.{M̄+n}_M[0][0] * (1 - fee_taker)^3

/ ask.m_M[0][0] / ask.{M̄+n}_m[0][0] = θ
becomes
bid.coin3_coin1[0][0] * (1 - fee_taker)^3

/ ask.coin2_coin1[0][0] / ask.coin3_coin2[0][0] = θ
2. run these conditions (clockwise and anticlockwise) against all the triples

within this array.
3. store the θ obtained in each triple on an array

arrayTriples.Mmn.theta = [theta0, theta1, ...]

where theta0 corresponds to θ of the clockwise profit condition of the first
triple, and theta1 is its anticlockwise θ. thus, the length of such array must
be the double of the number of the triples. the best profit can be readily
mapped to its corresponding triple.

4. repeat the process on triple arrays arrayTriples.mMn, arrayTriples.nMm.

this procedure will be executed periodically. it can be executed in parallel, each
by a different vCPU. the largest θ of each array are then compared with each
other to determine the largest amongst them.

trade the winners. for each triple you decide to trade, follow the sequence
described in section 3. on it

1. replace the coins symbols by coin1, coin2, coin3, according to their order
of trading

2. replace coin1, coin2, coin3 by the coins of your specific triple, according
to their respective position in the triple.
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the first item is a one time procedure. the second is ran at each trade, and can
be factored in a function with coin1, coin2, coin3 as parameters. it is out of
the scope of this work to dive in such details.

this concludes our work.
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