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Abstract: This article investigates the bootstrap methods
for producing good approximate confidence intervals. The
first section introduces the motivated example and compare
different approximated confidence intervals with the exact
intervals. Section two serves as an overview of different
bootstrap methods. Inspired by Efron’s paper (1994), this
article further explores the possibility to apply the bootstrap
method to common odds ratio in a series of 2 X 2 contingency
tables. The third section explains the procedure and gives the
results of Monte Carlo simulations.
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1. Introduction

Confidence interval is a useful data-analytic tool in statistical research field. It
combines point estimation and hypothesis testing, giving us important infor-
mation on how confident we are to make inference about the parameters that
we care about. Therefore, construction of more accurate confidence intervals
are desperately required for decision making and risk management. This article
discusses application of bootstrap methods in making refinement on coverage
accuracy of confidence intervals. Inspired by Efron’s remark H(1994), the ar-
ticle also explores the possibility of using bootstrap to make inference on the
common odds ratio based on several contingency tables.

There are two commonly used approaches for confidence interval construction.
In some cases, exact intervals can be derived. Agresti showed us few examples
based on small samples from two-way contingency tables in his book Categori-
cal Data Analysis. Even though exact intervals give the most accurate coverage
probability, they require problem-based subtle thought and heavy computation,
and are not suitable for many data sets. Therefore, exact intervals are not widely
used in real applications. In fact, most confidence intervals are approximated
ones, using the asymptotic properties of maximum likelihood estimators. These
kind of intervals are called standard intervals.
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where 0 is the point estimate of the parameter and & is an estimate of standard
deviation. Compared to the exact intervals, standard intervals are much easier
to calculate and do not need problem-by-problem based intervention. However,
they can be quite inaccurate sometimes in real practice.

Here, We use an example from Efron (1996) to show the considerable difference
between standard intervals and exact intervals, and give motivations to construct
bootstrap confidence intervals.

Table 1 shows the cd4 data: 20 HIV-positive subjects received an experimental
antiviral drug; cd4 counts in hundreds were recorded for each subject at baseline
and after one year of treatment.

Table 1. the cd4 data

Subject Baseline Oneyear Subject Baseline Oneyear

1 2.12 247 11 4.15 4.74
2 4.35 4.61 12 3.56 3.29
3 3.39 5.26 13 3.39 5.55
4 2.51 3.02 14 1.88 2.82
5 4.04 6.36 15 2.56 4.23
6 5.10 5.93 16 2.96 3.23
7 3.77 3.93 17 2.49 2.56
8 3.35 4.09 18 3.03 4.31
9 4.10 4.88 19 2.66 4.37
10 3.35 3.81 20 3.00 2.40

Each pair of data is recorded as x; = (B;,A;) for i = 1,2,...,20. The estimated
correlation coefficient between two measurements 6 is 0.723. Assume (B;,A;)
are 1.1.d samples from bivariate normal distribution,

(ﬁ) ~ita N(A,T) @

where A and 7 are the unknown mean vector and covariance matrix.

From the bivariate normal distribution model, we can calculate the exact inter-
val, standard interval and bootstrap interval for 6. Figure 1 shows us the exact
and approximated confidence intervals for correlation coefficient at different
nominal coverage.

Figure 1 shows that the bootstrap-t intervals match perfectly to the exact inter-
vals, while considerable differences exist between standard intervals and exact
intervals. Standard intervals are always symmetric to the maximum likelihood
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Figure 1. Exact and approximate confidence intervals for 8=corr(B,A)

, assuming a bivariate normal model for the cd4 data. The black curves are
exact intervals; blue curves are standard intervals; gold curves are Bootstrap-t
intervals. The black dashed line indicates the maximum likelihood estimate of

0.The horizontal line represents the nominal coverage probability of 0.68,

0.80, 0.90, and 0.95. The vertical direction shows the upper and lower
endpoints of the intervals from three different methods.

estimate of the parameter, which is not true in most situations. For example,
in the bivariate normal cd4 data model, exact intervals are shifted leftwards.
Standard intervals are too optimistic in ruling out the smaller endpoints and too
pessimistic in getting rid of the upper endpoints. In section 2, we will briefly re-
view the theoretical results of bootstrap intervals and give intuitive explanation
on why bootstrap intervals are more accurate than standard intervals.

However, there is not much evidence supporting the bivariate normal model as-
sumption. If (B;,A;) are i.i.d sample from some unknown distribution F, then
will the bootstrap intervals still perform better than the standard intervals? Fig-
ure 2 shows us the standard intervals and bootstrap intervals for correlation
coefficient at different nominal coverage based a nonparametric model. Figure
2 gives the similar results as we have seen in the parametric case. Section 2 will
show theoretical results that the bootstrap intervals are second-order accurate.

Results from cd4 dataset has motivated us to think more on how to utilize the
bootstrap method to make refinement on the standard intervals. Section 2 serves



as an overview of different bootstrap confidence intervals.
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Figure 2. Standard and bootstrap confidence intervals for 8=corr(B,A)

, assuming a nonparametric model. The black curves are standard intervals;
blue curves are ABC intervals; gold curves are BCa intervals; darkgreen
curves are Bootstrap-t intervals. The black dashed line indicates the maximum
likelihood estimate of 6.The horizontal line represents the nominal coverage
probability of 0.68, 0.80, 0.90, and 0.95. The vertical direction shows the
upper and lower endpoints of the intervals from four different methods.

2. Methodology

We learned from bootstrap chapter (Horowitz, 2001) from the handbook
of econometrics that bootstrap confidence intervals are second-order accu-
rate. There are different ways to construct bootstrap intervals. In this section
we briefly review three methods, BCy intervals, the ABC method and the
bootstrap-t method. For specifically detailed information, refer to Diciccio and
Efron(1996).

2.1. The BC, Intervals

Suppose 0 is the parameter of interest. The BC, method constructs confidence
interval for 6 from the percentiles of the bootstrap histogram. Suppose 6(x) is



an estimate of 0 based on the observed data x; and 0* = 6*(x*) is a bootstrap
replication of 6 based on the resampled dataset x* from an estimated distribu-
tion governing X (parametric case) or original sample X (nonparametric case).
Let G(c) be the cumulative distribution function of B bootstrap replications
6" (b). .

G(e) =Y Tp-(p)<c)/B 3)

The upper endpoint @pc,[a] of a one-sided level-a BC,, is defined in terms of
G and two numerical parameters zo and a.
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where z( serves as bias-correction and a is used to measure the speed that the
standard error is changing on a normalized scale.

éBCa[OC] = éil(D(ZO + “4)

We can intuitively understand why the BC, intervals are more accurate than
standard intervals. The results from cd4 data show us that the true distribution
of correlation coefficient is not normal, instead it is roughly left-skewed. The
symmetric intervals given by standard method will be considerably biased. It is
not hard to imagine that adding bias-correction parameter a into the model will
give us more accurate intervals. Also the standard error may be different than
the variance of normal distribution. a is used to correct the acceleration error
and account for the nonconstant standard error. By adjusting for bias and non-
constant standard error, the BC, method can give second-order accurate confi-
dence intervals. When zp and a are equal to O, then the BC, intervals are the
same as the standard intervals.

Prob{6 < bpc,[a]} = a+0(1/n) (5)
Prob{0 < bsran[a]} = o+ O(1/+/n) (6)

For computational details of zgp and a, refer to Diciccio and Efron’s paper
(1996).

2.2. The ABC Method

ABC stands for approximated bootstrap confidence intervals. Deriving BC, in-
tervals require heavy computation and Monte-Carlo simulations. However, in
some cases, it is possible to approximate the BC, interval endpoints analytically,
which largely reduces computational burden. The ABC intervals depend on five
estimated parameters (0, 5,4, %, ¢y)- (a,7y,¢,) corrects a deficiency of the stan-
dard method, making the ABC intervals second-order accurate. For computa-
tional details, refer to Diciccio and Efron’s paper (1996).



2.3.  Bootstrap-t Method

Bootstrap-t method is more bootstraplike and conceptually simpler than BC,
approach. The basic idea behind this method mimics the hypothesis testing and
interval construction based on t-statistic.-The key for confidence intervals de-
rived from this kind of method to be accurate is to find good approximate of the
variance and accurate percentiles.

Suppose 6 is an estimate for a parameter of interest 6 and & is an estimate for
the standard deviation of 6. Similar to t-statistic, we define
_bH-0

T - (7)
(o3

Let 7(® be the 1000th percentile of T. The lower endpoint of an a-level one-
sided confidence interval for 0 is

6— 67 (8)

However, unlike the t-statistic, we do not know the T-percentile here. The idea
of bootstrap-t method is to estimate T(®) by bootstrapping. We resample the
data from the estimated distribution of original sample x or directly from x with
replacement. And compute the T statistic for a large number of bootstrap repli-
cations B. Define 7(®) = B - ath ordered value of {T*(b),b = 1,2,...,B}.Then
the lower endpoint can be approximated by

A

Orja) =6 — 67 9)

Inspired by Efron’s paper (1994), this article tries to apply bootstrap-t method
to parameter of interest based on multiple data sets and explore whether re-
finement can be made. Common odds ratio (Mantel-Haenszel estimator) is an
important parameter in both biostatistics and clinical trials. It gives us informa-
tion on whether the treatment has pleasant effects or not. In applications, the
common odds ratio is calculated based on two different situations: large sam-
ple size in each contingency table for fixed number of tables and sparse sam-
ple sizes in each table but with a large number of contingency tables. Hauck
(1997) and Breslow (1981) gave the large sample approximations of estimators
based on these two situations respectively. Breslow and Liang (1982) showed
simulation results of comparing different variance computation approaches for
Mantel-Haenszel estimator based on two different situations.

Inspired by Breslow and Liang’s paper, this project will first re-conduct the
simulation and then try to apply bootstrap-t method in interval construction.
The next section will show the detailed simulation procedure and results.



3. Bootstrap-t Intervals for M-H Estimator

Mantel-Haenszel is a well-established estimator for common odds ratio in a se-
ries of 2 x 2 contingency tables. Breslow and Liang proposed four variances for
the logarithm of the Mantel-Haenszel estimator of the common odds ratio. Un-
conditional maximum likelihood method is useful to estimate the standard devi-
ation for MH estimator when sample size for each table is “infinite” with fixed
number of contingency tables, however it performs poorly in the case where
the table is sparse but with “infinite” number of tables (Hauck,1979). In the
sparse data case, instead, conditional maximum likelihood approached is used
to give good approximation of the standard deviation (Breslow, 1981). How-
ever, in real biomedical research and clinical trial experiments, the situation is
always between two cases mentioned above. Therefore, a weighted average of
two variances is proposed to combine two situations.

Consider a series of K 2 x 2 contingency tables formed by pairs of inde-
pendent binomial observations (X;,Y;) with denominators (n;,m;) and suc-
cess probabilities (py;, po;) for i = 1,2,...,K. We assume that the odds ra-
tio ¥; = p1i(1 — poi)/poi(1 — p1;) remains constant from table to table. Let
N; =n;j+m; and N =} N; denote the sample size in table i and the total sample
sizes for K tables, respectively.

The Mantel-Haenszel estimator is defined by

R
WMH_ZSi

where R,‘ = Xi(mi — Y,)/N, and Si = (l’li —X,‘)Yi/Ni.

(10)

Since M-H estimator can only take positive values, the distribution of ¥ is
highly skewed to the right. Taking logarithm of the common odds ratio can
alleviate the problem, making the distribution of { converging to normal dis-
tribution faster. éMH = log(Wyp) is the transformed estimator. Three different
variances of éMH mentioned above are defined as

S2 /W,
Vy = Z(égz (11)
Ri/Wnn — Si)?
VB:Z( /I(VSM; ) (12)
2
Voo — Vi + K2V 13
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The fourth variance estimator is based on the jackknife principle. The ba-
sic idea behind is that when the number of tables K is large, it is natural
and reasonable to consider pseudo-values obtained by dropping each of the
tables in turn from the calculations. Define II/;QH = Yj4iRi/ ¥ ;+iSi be the
Mantel-Haenszel estimator when the ith table is omitted. The pseudo-values
are 0; = Klogyu — (K — 1)logi,;;. The jackknife estimator is defines by

6,=Kk"Y 5 (14)

and the jackknife variance is (Tukey,1958)

Vi=—F/ (15)

In this article, we use the same simulation logic as what is used in Breslow
and Liang’s paper. Here, K, n;,m;, ¥ and pg; are chosen to be representative of
situations which are usually encountered in biomedical research. We conduct
two series of Monte Carlo simulations. The first series of simulations investi-
gate the performance of four different variances in matched sets, that is ”sparse
data with large numbers of tables” setting. The treatment group consists of 1
subject and control group consists of m subjects (ranging from 1 to 8). Depend-
ing on the value of m, the number of tables are 25, 50 or 100. The exposure
probabilities range from 0.3 to 0.8, with different increments corresponding to
different number of contingency tables. The second series of simulations inves-
tigate balanced experiments. The number of subjects in treatment and control
groups are equal, ranging from 5 to 30. The number of tables are chosen to be
5, 10 or 20. The exposure probabilities still range from 0.3 to 0.8 with differ-
ent increments corresponding to different number of contingency tables. The
balanced settings are used to explore the performance of four variances in situ-
ations where sample size is large but with fixed number of contingency tables.
Simulations in both series are conducted under the null hypothesis(y = 1) and
under the alternative hypothesis(y = 3.5). The number of repeated samples is
2000 in each simulation. In addition, we also explore and compare the accuracy
of confidence intervals for common odds ratio derived from standard method
and bootstrap-t method. The number of bootstrap replication is 1500 in each
round of simulation. The simulation results are shown in the following two ta-
bles.

The entries of two tables reflect the accuracy of two different large-sample
confidence intervals for 0 constructed from the M-H estimator and four dif-
ferent variances mentioned above. In detail, they show the percentage of sim-
ulated runs in which the true odds ratio 0 fell beyond the standard intervals
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: Standard Deviate Hauck’ s Variance Breslow s Variance Combined Variance Jackknife
standard bootstrap standard bootstrap standard bootstrap standard
|n m K L Y L.1 U.1 L2 U2 L.3 U3 L.4 U4 L5 U5 L.6 U6
1 1 100 0.64 0.00 2.56 2.36 4.76 0.00 2.20 1.96 4.76 0.00 2.20 1.96 1.84 1.96
1 2 50 0.60 0.00 1.72 2.72 5.56 0.00 1.80 2.92 5.56 0.00 1.8  2.92 1.48 1.80
1 2 100 0.48 0.00 2.92 2.60 4.84 0.00 2.8 2.64 4.84 0.00 2.8 2.64 2.24 2.12
1 4 25 1.16 0.04 2.04 2.48 6.60 0.00 2.28 2.04 6.52 0.00 2.28 2.04 1.00 0.68
1 4 50 0.92 0.04 2.28 2.52 5.88 0.00 2.32 3.04 5.8 0.00 2.28 3.04 1.96 1.76
1 8 25 1 2.00 0.00 2.6 2.44 6.24 0.00 2.44 1.60 6.08 0.00 2.48 1.56 1.44 0.76
)1 8 50 1.76 0.04 3 2.44 5.40 0.00 2.92 3.00 5.40 0.00 2.92 3.00 2.84 1.64
Ll 5 5 10 1.28 0.8 1.96 2.52 7.60 0.00 1.64 1.28 6.24 0.00 1.72 1.36 3.28 3.04
'l 5 5 20 1.20 0.72 2.56 2.32 6.32 0.00 2.48 2.16 5.96 0.00 2.44 2.12 2.96 2.36
bl 5 5 5 2.04 1.92 2.60 2.44 5.52 0.56 2.68 2.64 2.76 0.04 2.68 2.28 5.60 5.04
b 15 15 10 1.56 1.64 1.68 1.84 4.44 0.28 1.88 2.76 3.36 0.24 1.56 2.44 3.76 4.04
|16 15 20 1.96 2.08 2.96 4.08 4.44 0.52 3.08 4.40 4.32 0.56 3.08 4.20 3.36 3.52
y | 15 15 5 2.28 208 272 1.68 4.32 0.56 2.64 2.16 2.24 0.24 2.72 1.72 5.76 5.76
"3 3 10 2.28 1.72 3.24 2.08 492 0.08 3.32 1.40 3.56 0.12 3.20 1.64 4.72 3.32
b 30 30 20 2.04 216 3.04 2.36 3.20 0.80 2.12 2.84 2.8 0.88 2.36 2.60 2.92 3.00
)

Figure 3. Percentage of samples for which the standardized deviate based
on a log odds ratio estimation procedure fell beyond the upper or lower
2.5th percentile of the normal distribution and bootstrap-t distribution,8 =

0(y=1).
Standard Deviate Hauck’ s Variance Breslow' s Variance Combined Variance Jackknife
standard bootstrap standard bootstrap standard bootstrap standard
n m K L U L.1 U.1 L2 U2 L.3 U3 L.4 U4 L.5 U5 L.6 U6
1 1 100 0.00 0.00 2.12 2.00 4.28 0.00 2.32 1.96 4.28 0.00 2.32 1.96 2.96 0.00
1 2 50 0.28 0.00 2.64 2.08 4.52 0.00 2.52 2.68 4.52 0.00 2.52 2.68 2.84 0.12
1 2 100 /0.04 0.00 3.04 4.00 3.76 0.24 2.8 3.8 3.76 0.24 2.8 3.8 2.56 1.60
1 4 25 0.92 0.00 3.52 2.32 576 0.00 3.12 2.76 572 0.00 3.12 2.72 2.04 0.52
1 4 50 0.52 0.00 2.16 2.8 4.60 0.00 2.32 2.72 4.60 0.00 2.32 2.72 2.28 1.44
1 8 25 1.44 0.08 3 2.8 5,60 0.00 3.08 2.92 5.48 0.00 3.08 2.96 1.80 0.64
1 8 50 0.72 0.08 3 2.52 4.56 0.00 3.12 2.88 4.52 0.00 3.12 2.92 2.44 1.52
5 5 10 1.20 0.96 2.04 2.96 504 0.00 2.08 1.80 4.12 0.00 2.04 1.88 3.32 2.92
5 5 20 1.04 0.92 2.16 1.92 4.3 0.00 2.28 2.28 4.20 0.00 2.28 2.32 2.76 2.64
5 5 5 /2.28 2.28 2.8 2.68 4.40 0.16 2.40 2.44 2.60 0.04 2.84 2.44 5.24 5.40
15 15 10 1..76 1.88 2,00 2.48 3.40 0.16 2.08 1,92 2,72 0.08 2.20 1.84 3.16 4.00
15 15 20 1.20 1.88 1.48 2.44 3.16 0.56 1.48 2.52 2.8 0.60 1.52 2.32 2.64 2.92
15 15 5 [2.12 2.20 2.56 2.48 3.72 0.52 1.80 3.24 1.88 0.28 2.12 3.40 5.88 6.28
30 30 10 1.80 2.48 2 2.72 2.72 0.60 2.12 2.36 2.40 0.76 2.20 3.04 3.40 5.00
30 30 20 2.16 2.20 2.48 2.40 3.20 1.16 3.24 2.16 3.12 1.20 3.28 2.12 3.12 3.20

Figure 4. Percentage of samples for which the standardized deviate based
on a log odds ratio estimation procedure fell beyond the upper or lower
2.5th percentile of the normal distribution and bootstrap-t distribution,8 =
1.253 (v =3.5).

6+ z0-9V2 and the bootstrap-t intervals 6 + -0y, Theoretically, the
percentage should be 2.5% all the time.

From Figure 3, we can see that with common odds ratio equal to 1, Hauck’s
Variance performs well when the sample size for each table is large. However,
it tends to underestimate the percentage when the sample size in each table is
small, especially for the values falling beyond the upper endpoint. Breslow and
combined variances do not perform well either; the true odds ratio of v =1 is
less than the lower confidence bound in almost 5 to 7% of samples, whereas it
should be close to 2.5% nominally. Jackknife performs well when the number



of tables is sufficiently large, but tends to overestimate the percentage when K
is small. From Figure 4, we can see that with common odds ratio equal to 3.5,
Hauck’s Variance performs well when the sample size for each table is large.
However, it tends to underestimate the percentage when the sample size in each
table is small, both for the upper endpoint and the lower endpoint. Breslow and
combined variances do not perform well either. Jackknife performs well when
the number of tables is large, but tends to overestimate the percentage when K
is small.

To further compare the confidence intervals constructed by the standard method
and the bootstrap-t method, we make two scatter plots to visualize those per-
centages using Hauck’s, Breslow’s and combined variances. It is obvious that
if we use percentiles from the bootstrap distribution to normalize the common
odds ratio, the percentages are closer to the theoretical results (2.5%, 2.5%).

Therefore, the best strategy to construct confidence intervals for the true com-
mon odds ratio is to select the reasonable variance form corresponding to dif-
ferent situations and the percentiles calculated from the bootstrap distribution.

4. Discussion

Before we apply the bootstrap method to the common odds ratio in a series of
K 2x2, we take one table (Mendenhall et.all, 1984) as a pilot example. Exact,
standard and bootstrap intervals are constructed. But for simplicity, we omit
the results for this data set in this article. R codes for this part is attached in
the appendix. In the future work, we may consider to compare the accuracy
of confidence intervals for common odds ratio derived from different bootstrap
approaches, such as BC, and ABC methods etc. We may also consider to apply
bootstrap methods to different data forms which consist of K-samples other
than K 2x2 contingency tables.
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Figure 6. Scatter plot of percentage of samples for which the standard-
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upper or lower 2.5th percentile of the normal distribution and bootstrap-t
distribution,® = 1.253 (y = 3.5). Red points and green points represent the
percentages derived from the standard method and the bootstrap-t method,
respectively.
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