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Chapter 0

Preliminaries

0.1 Basics

1. It is less of a pain to figure out the form of all matrices in B than to multiply
all of these matrices by M. Such matrices X satisfy(

1 1
0 1

)(
p q
r s

)
=

(
p + r q + s

r s

)
=

(
p p + q
r r + s

)
=

(
p q
r s

)(
1 1
0 1

)

That is to say, r = 0 and p = s so the matrices X take the form(
s q
0 s

)

So, of the matrices shown, the following are elements of B:(
1 1
0 1

)
,
(

0 0
0 0

)
,
(

1 0
0 1

)

2. If P, Q ∈ B, then (P + Q)M = PM + QM = MP + MQ = M(P + Q). There-
fore, P + Q ∈ B.

3. If P, Q ∈ B, then PQM = PMQ = MPQ. Therefore, PQ ∈ B.

4. See the solution to problem 1 above.

5. (a) This function is not well-defined. For example, 1
2 may be written 2

4 , 3
6 , etc.

So it is ambiguous what the value of f (1/2) should be.
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0.1. Basics 2

5. (b) This function is well defined, since if a/b = c/d then we have a2/b2 =

c2/d2.

6. Although the decimal expansion of many real numbers is unique, there are
some real numbers that have two different decimal expansions (e.g., 0.49̄ = 0.5).
Therefore, this function is not well defined.

7. This relation is clearly reflexive since f (a) = f (a) ∀a ∈ A. It is symmetric
because if a ∼ b then f (a) = f (b), which means f (b) = f (a) and therefore, b ∼ a.
Finally, if a ∼ b and b ∼ c, then f (a) = f (b) and f (b) = f (c). This means that
f (a) = f (c) and therefore, a ∼ c. Thus, the relation is transitive as well, and is an
equivalence relation. The equivalence classes are sets of elements in A that map to
the same element in B, which are exactly the fibers of f .
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0.2 Properties of the Integers

1. (a) Since 13 is prime, their greatest common divisor is 1. Their least common
multiple is 260. We may write 2 · 20− 3 · 13 = 1

1. (b) Their greatest common divisor is 3. Their least common multiple is 8556.
We may write 18 · 372− 97 · 69 = 3

1. (c) Their greatest common divisor is 11. Their least common multiple is 19800.
We may write 8 · 792− 23 · 275 = 11.

1. (d) Their greatest common divisor is 3. Their least common multiple is
21540381. We may write 34426 · 5673− 17145 · 11391 = 3.

1. (e) Their greatest common divisor is 1. Their least common multiple is 2759487.
We may write 140037984 · 1761− 157375169 · 1567 = 1.

1. (f) Their greatest common divisor is 691. Their least common multiple is
44693880. We may write 1479 · 507885− 12353 · 60808 = 691.

2. If k|a and k|b, then there exist c, d ∈ Z such that a = kc and b = kd. Then
for any integers s, t, we have as + bt = kcs + kdt = k(cs + dt). Since cs + dt ∈ Z,
k|as + bt.

3. If n is composite, then there are two integers a, b such that 1 < |a| < n, 1 <

|b| < n, and n = ab. Then n - a and n - b, but n|ab.

4. Since d|b and d|a, clearly bt/d, at/d ∈ Z and so are x and y. Then we have

ax + by = a
(

x0 +
b
d

t
)
+ b

(
y0 −

a
d

t
)
= ax0 + by0 = N

Therefore, for any t ∈ Z, the given x and y are also solutions to ax + by = N.

5. φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2, φ(7) =

6, φ(8) = 4, φ(9) = 6, φ(10) = 4, φ(11) = 10, φ(12) = 4, φ(13) = 12, φ(14) =

6, φ(15) = 8, φ(16) = 8, φ(17) = 16, φ(18) = 6, φ(19) = 18, φ(20) = 8, φ(21) =
12, φ(22) = 10, φ(23) = 22, φ(24) = 8, φ(25) = 20, φ(26) = 12, φ(27) =

18, φ(28) = 12, φ(29) = 28, φ(30) = 8.
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6. Assume that there exists a non-empty subset A that has no least element. Then
1 /∈ A or 1 would be the least element of A. Suppose that all positive integers less
than or equal to n are in Z+ \ A. Then n + 1 cannot be in A either or it would
be the least element of A. By induction on n, no positive integer is in A and
therefore, A = ∅. This is a contradiction so every non-empty subset of Z+ has a
least element.

7. Let p be a prime, and suppose there exist nonzero integers a, b such that a2 =

pb2. Assume without loss of generality that (a, b) = 1. Note that if p|a2 then p|a.
Therefore, ∃c ∈ Z \ {0} such that a = pc and a2 = pb2 = p2c2. This, however,
implies that p|(a, b), which is a contradiction. Therefore, no such integers a, b exist.

8. The number of integers ≤ n that are divisible by p is given by
⌊

n
p

⌋
. Similarly,

the number of integers ≤ n that are divisible by pk is given by
⌊

n
pk

⌋
. These expres-

sions count only a single factor of p from each of these integers. So the expression
for the largest power ` of p that divides n! is

` = ∑
k

⌊
n
pk

⌋

9. This is trivial and left as an exercise for the reader.

10. Fix N, and note that for any integer n such that φ(n) = N, all of its prime
factors must be less than or equal to N + 1. This must be true, since for any prime
p > N + 1, φ(p) > N, and if p is a prime factor of n, then φ(p)|N, which is clearly
absurd. Let p1, p2, . . . , pt be the primes less than or equal to N + 1. All numbers n
such that φ(n) = N therefore have a unique prime factorization n = ps1

1 ps2
2 . . . pst

t .
For 1 ≤ i ≤ t, then, psi−1

i |N. Let ki be the largest integer such that pki
i |N. We require

si ≤ ki + 1 and thus, there are at most ∏i(ki + 1) integers n such that φ(n) = N.
Since the fiber of φ over each positive integer is of finite order, φ must tend to
infinity as n tends to infinity.

11. Let n = ps1
1 ps2

2 ...pst
t . Then φ(n) = ps1−1

1 ps2−1
2 ...pst−1

t φ(p1...pt). If d|n, then we
may write d = pr1

1 pr2
2 ...prt

t and φ(d) = pr1−1
1 pr2−1

2 ...prt−1
t φ(∏i:ri 6=0 pi), where 0 ≤ ri ≤

si for all i. It is obvious that φ(d)|φ(n), hence the claim.
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0.3 Z/nZ: The Integers Modulo n

1. The equivalence classes are a = {a + 18k|k ∈ Z} where a = 0, 1, ..., 17.

2. For fixed integer n, all integers a may be written in the form a = qn + r, where
0 ≤ r < |n| and r, q ∈ Z. That is to say, a − r = qn and therefore n|a − r. We
can then say that a is in the residue class of r. The possible values of r are exactly
0, 1, ..., n− 1. So the distinct equivalence classes are exactly 0, 1, ..., n− 1.

These equivalence classes are truly distinct. If an integer a is in the equivalence
class of both b and c, where b 6= c and 0 ≤ b, c < |n|, then a − b = qbn and
a− c = qcn. It follows that b− c = (qc − qb)n. However, |b− c| < |n| so this can
only be true if b− c = 0, which is a contradiction.

3. Since 10 ≡ 1 (mod 9), we have that 10n ≡ 1 (mod 9).Then an10n ≡ an (mod 9),
and a ≡ an + an−1 + ... + a0 (mod 9).

4. First, note that 37 ≡ 8 (mod 29) and that 828 ≡ 1 (mod 29). Then 37100 =

373·28+16 ≡ 816 ≡ 23 (mod 29). The remainder is 23.

5. The last two digits are the remainder when 91500 is divided by 100. Note that
910 ≡ 1 (mod 100). Therefore, the last two digits are 01.

6. 02
= 02 = 0, 1

2
= 12 = 1, 22

= 22 = 4 = 0, and 32
= 32 = 9 = 1

7. From the previous exercise, we know that a2, b2 are either 0 or 1. Thus, a2 + b2

must be 0, 1, or 2.

8. Consider the equation mod 4, and suppose that there exists non-zero integers
a0, b0, and c0 such that a2

0 + b2
0 = 3c2

0. From the previous two exercises, we know
that 3c2

0 must be equal to either 0 or 3. However, since it is impossible for a2
0 + b2

0
to be equal to 3, we find that both are equal to 0. Then we may write a0 = 2a1,
b0 = 2b1, and c0 = 2c1, where a1, b1, c1 ∈ Z. It is clear that a1, b1, and c1 are also
solutions to the equation and that we can repeat this process infinitely many times
to obtain an infinite number of solutions between 0 and a0, b0, c0. This is absurd,
hence there are no non-zero integer solutions to a2 + b2 = 3c2.

9. Any odd integer may be written in the form 2k + 1, where k ∈ Z. The square
of an odd integer is therefore (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1. Note that if
k is not even, then k + 1 must be so that for all k ∈ Z, (2k + 1)2 = 8q + 1, for some
integer q.
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10. Proposition 4 states that (Z/nZ)× = {a ∈ Z/nZ|(a, n) = 1}. From the first
exercise, we know that the residue classes of Z/nZ are 0, 1, ..., n− 1. Furthermore,
we know that the number of integers a such that a ≤ n and (a, n) = 1 is φ(n).
Therefore, there are φ(n) elements of (Z/nZ)×.

11. If a, b ∈ (Z/nZ)×, then there exist a−1, b−1 ∈ Z/nZ such that a−1 · a = 1 and
b−1 · b = 1. Observe that b−1 · a−1 · a · b = 1 and that a · b, b−1 · a−1 ∈ Z/nZ. It
follows that a · b ∈ (Z/nZ)×

12. Let a, n ∈ Z such that n > 1 and 1 ≤ a ≤ n. Suppose that (a, n) = d, d > 1.
We may then write n = bd and a = cd, where b, c ∈ Z. Then ab = cdb = cn ≡
0 (mod n).

Now suppose that there exists e ∈ Z such that ae ≡ 1 (mod n). Then ae = qn + 1
for some q ∈ Z. Remembering that n = bd and a = cd, we have cde − qbd =

d(ce− qb) = 1. However d > 1 so d - 1, which is a contradiction. Therefore, no
such integer e exists.

13. Let a, n ∈ Z such that n > 1 and 1 ≤ a ≤ n. Suppose that (a, n) = 1. Then
there exist b, c ∈ Z such that ac + nb = 1 or ac = −bn + 1. Clearly, ac ≡ 1 (mod n).

14. In the previous two exercises, we found that for a, there exists c such that a ·
c = 1 iff a and n are relatively prime. Therefore, (Z/nZ)× = {a ∈ Z/nZ | there exists c ∈
Z/nZ with a · c = 1} = {a ∈ Z/nZ | (a, n) = 1}.

15. (a) 13 is prime and 20 is not a multiple of 13 so they are relatively prime. The
multiplicative inverse of 13 is 17.

15. (b) 89 is prime so 69 and 89 are relatively prime. The multiplicative inverse
of 69 is 40.

15. (c) 3797 is prime so 1891 and 3797 are relatively prime. The multiplicative
inverse of 1891 is 253.

15. (d) 77695236973 is prime so 77695236973 and 6003722857 are relatively prime.
The multiplicative inverse of 6003722857 is 77695236753.

16. This is trivial and is left as an exercise to the reader.


	Front page
	Contents
	0 Preliminaries
	0.1 Basics
	0.2 Properties of the Integers
	0.3 Z/nZ: The Integers Modulo n


