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CHAPTER 1

INTRODUCTION

This template follows the thesis format guidelines from the Florida Poly Thesis and Project

Manual. This template also includes sample figures, equations, etc. to demonstrate how key

elements are included in Latex. For example, check the code for Fig. 1.1 to see how to insert

a figure. Also, check this sentence for how to insert in-text citations [1]. You define the

callout name and reference details in the “.bib” file. You can also insert multiple citations

at the same instance [1, 2, 3, 4, 5]. Leave one or more blank lines between blocks of text to

start a new paragraph (you can have as many blank lines as you want—they do not affect

document format).

Each chapter also includes the description for what to include for that chapter as provided

by the Thesis and Project Manual. The chapter titles are those listed by the Thesis and

Project Manual, but different chapter titles often make more sense for many STEM theses.

A general framework typically includes an introduction for Chapter 1, background/literature

review for Chapter 2, and conclusions for the final chapter. In between, there are 2–4 chapters

that cover the approach, methods, results, and discussion—sometimes these chapters have

topic-specific titles (e.g., “Computational Model”).

1.1 Poly Manual Description

The introduction chapter should emphasize the purpose of the study and summarize

the background and importance of this research. This chapter should also clearly state the

hypothesis and the objectives of the research. Finally, this chapter should introduce the user

1



Figure 1.1: Representative turbomachinery blade

to the outline of the thesis.

2



CHAPTER 2

LITERATURE SURVEY

Type your chapter here...

2.1 Here is a Section Title

Here is some text. Let’s use a subsection for the Thesis and Project Manual chapter

description this time.

2.1.1 Poly Manual Description

The literature review will summarize the existing research in the field with references to

these research studies and their authors. At the end of the literature review, clearly state

the identified gaps in the existing research solutions and address these gaps by this thesis.

In other words, you are introducing the reader to your work in the next chapter.
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CHAPTER 3

RESEARCH METHODOLOGY

Take a look at Table 3.1. It shows how you can make a table in Latex. You can also make

your table elsewhere and insert the image in a similar way as inserting an image for a figure.

Note that you upload all your images using the “Upload” tool on the top left corner of

Overleaf (it has an arrow pointing up).

3.1 Poly Manual Description

This chapter will provide details on the chosen methods, designs, measures, and philos-

ophy behind these choices. In addition, this chapter should include a description of any

conduct experiment.

4



Table 3.1: Parameters used in experimental setup.
a (mm) h (mm) E (GPa) ν ρ (kg/m2) εrel

Plate 128 2.03 68.9 0.31 2750 -
Piezo 34.3 0.267 59.8 0.31 7500 1953
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CHAPTER 4

RESULTS

Type your chapter here. Let us show some examples of inserting equations here. Sometimes

we want to write equations or math symbols in the text, like this: c2 =
√
a2 + b2. However,

most of the time we want to insert numbered equations, like this:

k2 =
electrical energy

imposed work
=

ω2
oc − ω2

sc

ω2
oc

(4.1)

Do not include a blank like after the equation if you want to continue in the same paragraph.

You can easily refer back to an equation: go check out Eqn. (4.1). Now I will paste in some

text and equations from a previous paper that demonstrate a variety of math symbols,

structures, etc.

4.1 Sample equations

Analysis of the strain energy produces the bending stiffness matrix, which is split into the

contribution from the plate [Ko] and the contribution from the piezoelectric patches [Kp].

The stiffness from the plate is:

[Ko]rsuv =
Eh3

12(1− ν2)
(I1 + I2 + I3 + I4 + I5) (4.2)

where Appendix A includes the integrals I1 through I5, which have the form:

Ii = Ci

∫ a

0

xn1(b1 +
b2 − b1

a
x)n2dx (4.3)

6



The integration over x may be carried out analytically in MATLAB using polynomial func-

tions. Now, integrating over the piezoelectric material volume produces:

[Kp]rsuv =
P∑

p=1

Ep

12(1− νp)2
(3h2hp + 6hh2

p + 4h3
p)

× (I1p + I2p + I3p + I4p + I5p)

(4.4)

The total bending stiffness matrix from the strain energy is the summation of the plate

and piezoelectric patch matrices:

[K] = [Ko] + [Kp] (4.5)

In addition to these terms, the stiffness matrix must also incorporate the stiffening associated

with in-planes loads induced by centrifugal loading.

4.1.1 Electrical and Coupling Stiffness Matrices

Analysis of electrical energy and coupled energy leads to electrical and coupled stiff-

ness matrices. The electrical stiffness matrix is diagonal; the P entries are the equivalent

capacitances of the piezoelectric patches:

[Ke]pp =
εpAp

hp

(4.6)

The coupled energy produces the coupling stiffness matrix:

[Kc]prs =
P∑

p=1

e31p
h+ hp

2

(
r + 1

s

(xr
2p − xr

1p)(y
s
2p − ys1p)

ar+1bs−1
2

+
s− 1

r + 2

(xr+2
2p − xr+2

1p )(ys−2
2p − ys−2

1p )

ar+1bs−1
2

) (4.7)

Note the second term in [Kc]prs is equal to zero when s ≤ 2.

7



4.1.2 Mass Matrix

Analysis of the kinetic energy produces the mass matrix. Similar to the bending stiffness,

the mass matrix includes plate and piezoelectric patch components. The plate contribution

to the mass matrix is:

[Mo]rsuv =
2ρh

(s+ v − 1)ar+u+2bs+v−2
2

IM (4.8)

IM =


∫ a

0
xr+u+2(b1 +

b2−b1
a

x)s+v−1dx for s+ v even

0 for s+ v odd

(4.9)

The piezoelectric contribution to the mass matrix is:

[Mp]rsuv =
P∑

p=1

CMp(x
r+u+3
2p − xr+u+3

1p )(ys+v−1
2p − ys+v−1

1p ) (4.10)

CMp =
ρphp

(r + u+ 3)(s+ v − 1)ar+u+2bs+v−2
2

(4.11)

Summation of these components produces the mass matrix:

[M ] = [Mo] + [Mp] (4.12)

4.1.3 Equations of Motion

The energy formulations enable calculation of the equations of motion via Lagrange’s

equation:

d

dt

(
∂T

∂{q̇}

)
+

∂(Ustrain + Uelec + Ucoupled)

∂{q}
=

∂δW

∂{δq}
(4.13)

Here, δW is the virtual work performed by generalized mechanical and electrical external

forces (Fm and Fe, respectively). Inserting energy terms, solving, and adding a damping

8



matrix [C] results in the equations of motion:

M 0

0 0


q̈m

q̈e

+

C 0

0 0


q̇m

q̇e

+

K −Kt
c

Kc Ke


qm

qe

 =

Fm

Fe

 (4.14)

where inserting electrical boundary conditions produces a non-singular mass matrix.

4.2 Poly Manual Description

This chapter contains the result of the thesis. If possible, organize the thesis’s results into

figures. Otherwise, organize the results into tables. Finally, divide the results into sections

and subsections based on the research questions they address.

9



CHAPTER 5

DISCUSSIONS

Type your chapter here. See the (commented out) code below to check out how to insert a

figure with subfigures (subfigure package also commented out in preamble). The code throws

an error, but still works... I think the “subfigure” package may be obsolete now and there is

another way to insert subfigures. In any case, this code does work if you need it.

5.1 Poly Manual Description

This chapter contains the analysis, explanations, and discussions of the results. It should

also include statements whether the results support the hypothesis or not, with some rea-

soning if it does not.

10



CHAPTER 6

CONCLUSION

Type your chapter here...

6.1 Poly Manual Description

This chapter should be a summary of the study indicating whether the study met its

goals or not.
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CHAPTER 7

FUTURE WORK

Type your chapter here...

7.1 Poly Manual Description

This chapter is a recommended optional chapter. It will present the possible future

research paths that will build on this study.
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APPENDIX A

INSERT TITLE

See below for more pasted code with various equations.

A.1 More Sample Equations

The assumed modes method approximates the transverse displacement w as a summation

of assumed shapes weighted by generalized coordinates qrs:

w(x, y, t) =
R∑

r=1

S∑
s=1

qrs(t)φX,r(x)φY,s(y) (A.1)

For this study, the assumed shapes in the x- and y- directions are:

φX,r(x) =
(x
a

)r+1

(A.2)

φY,s(x) =

(
y

b2

)s−1

(A.3)

The model includes R shapes in the x-direction and S shapes in the y-direction. These

assumed shapes in each direction form M combined assumed shapes for the entire plate:

φm(x, y) = φX,r(x)φY,s(y) (A.4)

m = (r − 1)S + s (A.5)

w(x, y, t) =
M∑

m=1

qm(t)φm(x, y) (A.6)
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Although other assumed shapes might provide better convergence, these shapes offer the

capability of performing analytical integration. An analytical solution results in much faster

computation, which is crucial for rapid prediction of coupling for optimization.

Each piezoelectric patch also requires analysis of the electrical state. The assumed shape

for the voltage Vp of each patch is a linear variation through the thickness of the patch with

generalized electrical coordinate qep:

Vp(z, t) = qep
z − h/2

hp

(A.7)

A.1.1 Strain Energy

The assumed modes method derives mass and stiffness matrices from energy terms. To

start, the strain energy Ustrain is the integral over the volume of the stress tensor σij multiplied

by the strain tensor ϵij:

Ustrain =
1

2

∫
Aσijϵijd

A

(A.8)

Stress-strain relations allow stress to be written in terms of strain and material constants:

σxx =
E

1− ν2
ϵxx +

Eν

1− ν2
ϵyy (A.9)

σyy =
Eν

1− ν2
ϵxx +

E

1− ν2
ϵyy (A.10)

σxy =
E

1 + ν
ϵxy (A.11)

Classical plate theory provides the strain-displacement relations:

ϵxx = ϵ0xx − z
∂2w

∂x2
(A.12)

ϵyy = ϵ0yy − z
∂2w

∂y2
(A.13)

ϵxy = ϵ0xy − z
∂2w

∂x∂y
(A.14)

15



Here, ϵ0xx, ϵ
0
yy, and ϵ0xy refer to the midplane strains. Without any piezoelectric material,

the plate is symmetric about the midplane and there is no bending-extension coupling. In

practice, the piezoelectric material volume should be much smaller than the plate volume;

therefore, assume any bending-extension coupling from the piezoelectric material is negligi-

ble. Thus, the midplane strains are zero for pure bending (ϵ0xx = ϵ0yy = ϵ0xy = 0).

The stress-strain and strain-displacement relations along with the assumed displacement

allow the strain energy to be written in terms of the generalized coordinates and derivatives

of the assumed shapes. In fact, the strain energy may be written in the form:

Ustrain =
1

2
{q}t[K]{q} (A.15)

Here, {q} is a vector of the mechanical generalized coordinates and [K] is a matrix with

elements calculated by integrating over the volume of the blade:

[K]rsuv =

∫
A

Ez2

1− ν2

×

[
r(r + 1)u(u+ 1)

a4

(x
a

)r+u−2
(
y

b2

)s+v−2

+
(s− 1)(s− 2)(v − 1)(v − 2)

b42

(x
a

)r+u+2
(
y

b2

)s+v−6

+ν
r(r + 1)(v − 1)(v − 2)

a2b22

(x
a

)r+u
(
y

b2

)s+v−4

+ν
u(u+ 1)(s− 1)(s− 2)

a2b22

(x
a

)r+u
(
y

b2

)s+v−4

+2(1− ν)
(r + 1)(u+ 1)(s− 1)(v − 1)

a2b22

×
(x
a

)r+u
(
y

b2

)s+v−4
]
d

A

(A.16)

Equation (A.16) calculates the mth row and nth column of the [K] matrix, where Eqn. (A.5)

relates r and s to m and, in an analogous fashion, u and v to n. The volume integral for the

[K] matrix is more tractable when broken into the volume integrals over the plate volume

16



A

o and piezoelectric material volume

A

p:

∫

A

o

d

A

o =

∫ a

0

∫ b(x)

−b(x)

∫ h/2

−h/2

dz dy dx (A.17)∫

A

p

d

A

p =
P∑

p=1

∫ x2p

x1p

∫ y2p

y1p

∫ h/2+hp

h/2

dz dy dx (A.18)

17



Integrating over the plate volume produces Eqn. (4.2) with the integral terms:

I1 =


C1

∫ a

0
xr+u−2(b1 +

b2−b1
a

x)s+v−1dx for s+ v even

0 for s+ v odd

(A.19)

I2 =


C2

∫ a

0
xr+u+2(b1 +

b2−b1
a

x)s+v−5dx
for s+ v even;

s, v > 2

0
for s+ v odd

or s ≤ 2 or v ≤ 2

(A.20)

I3 =


C3

∫ a

0
xr+u(b1 +

b2−b1
a

x)s+v−3dx
for s+ v even;

v > 2

0
for s+ v odd

or v ≤ 2

(A.21)

I4 =


C4

∫ a

0
xr+u(b1 +

b2−b1
a

x)s+v−3dx
for s+ v even;

s > 2

0
for s+ v odd

or s ≤ 2

(A.22)

I5 =


C5

∫ a

0
xr+u(b1 +

b2−b1
a

x)s+v−3dx
for s+ v even;

s, v > 1

0
for s+ v odd

or s = 1 or v = 1

(A.23)

C1 =
2r(r + 1)u(u+ 1)

(s+ v − 1)ar+u+2bs+v−2
2

(A.24)

C2 =
2(s− 1)(s− 2)(v − 1)(v − 2)

(s+ v − 5)ar+u+2bs+v−2
2

(A.25)

C3 = 2ν
r(r + 1)(v − 1)(v − 2)

(s+ v − 3)ar+u+2bs+v−2
2

(A.26)

C4 = 2ν
u(u+ 1)(s− 1)(s− 2)

(s+ v − 3)ar+u+2bs+v−2
2

(A.27)

C5 = 4(1− ν)
(r + 1)(u+ 1)(s− 1)(v − 1)

(s+ v − 3)ar+u+2bs+v−2
2

(A.28)
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Integration over the piezoelectric material region produces Eqn. (4.4) with integral terms:

I1p = C1p(x
r+u−1
2p − xr+u−1

1p )(ys+v−1
2p − ys+v−1

1p ) (A.29)

I2p = C2p(x
r+u+3
2p − xr+u+3

1p )(ys+v−5
2p − ys+v−5

1p ) (A.30)

I3p = C3p(x
r+u+1
2p − xr+u+1

1p )(ys+v−3
2p − ys+v−3

1p ) (A.31)

I4p = C4p(x
r+u+1
2p − xr+u+1

1p )(ys+v−3
2p − ys+v−3

1p ) (A.32)

I5p = C5p(x
r+u+1
2p − xr+u+1

1p )(ys+v−3
2p − ys+v−3

1p ) (A.33)

These piezoelectric integrals do not depend on whether s+ v is even or odd since the piezo-

electric material is not, necessarily, symmetric with respect to the coordinates. However,

each integral is zero for the same s and v values corresponding to zero-valued derivatives

as written explicitly for the plate integrals (e.g., I3p = 0 for v ≤ 2). The constant coeffi-

cients in the piezoelectric integrals are equal to the corresponding coefficients for the plate

divided by twice the power of x in each integral solution, while also replacing ν with νp (i.e.,

C1p =
C1

2(r+u−1)
, C2p =

C2

2(r+u+3)
, etc.).

A.1.2 Electrical and Coupled Energy

Analysis of the electrical energy and coupled energy captures the effect of the electrome-

chanical coupling. The electrical energy Uelec is:

Uelec =
P∑

p=1

1

2

∫

A

p

εp

(
−∂Vp

∂z

)2

d

A

p (A.34)

Here, εp is the dielectric constant of the piezoelectric material at a constant strain. Integrat-

ing over the volume of the piezoelectric material produces:

Uelec =
P∑

p=1

1

2
q2pe

εpAp

hp

(A.35)
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Here, Ap is the in-plane area of the pth piezoelectric patch. Now the electrical potential

energy may be written in the form:

Uelec =
1

2
{qe}t[Ke]{qe} (A.36)

Thus, the elements of the electrical stiffness matrix are in the form of Eqn. (4.6)

The piezoelectric material also results in a coupled energy Ucoupled that includes the

mechanical strain and the electrical potential. While Ucoupled = 0, it provides a mechanism

to couple work and energy across domains. Most piezoelectric patches exhibit in-plane

isotropy (e31 = e32), so the coupled energy is:

Ucoupled =
P∑

p=1

1

2

∫

A

p

(
−∂Vp

∂z

)
e31p(ϵxx + ϵyy)d

A

p

−
P∑

p=1

1

2

∫
A

p

e31p(ϵxx + ϵyy)

(
−∂Vp

∂z

)
d

A

p

(A.37)

Substituting for the strain and voltage produces:

Ucoupled =
1

2
{qe}t[Kc]{qm} −

1

2
{qm}t[Kc]

t{qe} (A.38)

Here, the coupled stiffness matrix elements are:

[Kc]prs =
P∑

p=1

∫

A

p

e31p
z

hp

[
r(r + 1)

a2

(x
a

)r−1
(
y

b2

)s−1

+
(s− 1)(s− 2)

b22

(x
a

)r+1
(
y

b2

)s−3
]
d

A

p

(A.39)

Integrating over the volume produces Eqn. (4.7).
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A.1.3 Kinetic Energy

Finally, the kinetic energy T leads to the mass matrix for the representative blade:

T =
1

2

∫

Aρ

(
∂w

∂t

)2

d

A

(A.40)

The kinetic energy may be rewritten to define the mass matrix [M ]:

T =
1

2
{q̇}t[M ]{q̇} (A.41)

This form of the kinetic energy produces the integral for the mass matrix:

[M ]rsuv =

∫

Aρ
(x
a

)r+u+2
(
y

b2

)s+v−2

d

A

(A.42)

Integrating the mass matrix over the plate volume produces Eqn. (4.8).

A.1.4 Rotated Piezoelectric Patches

The previously calculated system matrices correspond to piezoelectric patches with zero

rotation about the z-axis. Inclusion of rotated piezoelectric patches requires a change in

coordinates to calculate piezoelectric contributions to the system matrices. The coordinate

transformation from the xy- to αβ-system via a counterclockwise rotation θ of the piezoelec-

tric patch about its centroid is:

x

y

 =

cos θ − sin θ

sin θ cos θ


α

β

 (A.43)

Looking back at the previous analysis, all of the integrals are of the form:

I =

∫ ∫
xnxyny dy dx (A.44)
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Using the coordinate transformation, this integral becomes:

I =

∫ α+

α−

∫ β+

β−

(α cos θ − β sin θ)nx(α sin θ + β cos θ)ny dβ dα (A.45)

Here, α−, α+, β−, and β+ are the bounds of the piezoelectric patch in the αβ-system,

which may be calculated from the bounds in the xy-system by applying the coordinate

transformation in Eqn (A.43). Applying the binomial theorem allows the integral to be

solved analytically:

I =
nx∑
i=0

ny∑
j=0

Cij(α
nx+ny−i−j+1
+ − α

nx+ny−i−j+1
− )

× (βi+j+1
+ − βi+j+1

− )

(A.46)

Cij =
nx!ny!(−1)i(sin θ)ny+i−j(cos θ)nx−i+j

i!j!(nx − i)!(ny − j)!(nx + ny − i+ j + 1)(i+ j + 1)
(A.47)
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