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ABSTRACT

Multicarrier Modulation (MCM) is a widely used modulation scheme in broadband
communications. It is superior to ordinary Single Carrier (SC) technique in terms of data
rate, combating multipath and eliminating the effect of intersymbol interference (ISI)
without using complex equalizers. The most common MCM scheme is Orthogonal Fre-
quency Division Multiplexing (OFDM) and can be implemented using the Fast Fourier
Transform (FFT) for modulation and demodulation. Wavelet-based OFDM as an al-
ternative scheme to Fourier-OFDM has been recently adopted in some standards such
as the IEEE 1901. This thesis is mainly about mitigating impulsive noise in wavelet-
OFDM systems and this was achieved by using two mitigation techniques. The first
method was by using blanking technique which is a common technique used in FFT-
OFDM systems. This technique was used to mitigate the impulsive noise in all wavelet
families under study which were Haar, Daubechies-4 and biorthogonal-4.4. The second
technique, the replacing technique, was proposed and developed based on the mathe-
matical analysis of the Haar discrete wavelet transform-OFDM. A redundancy in data
was found and exploited to mitigate the impulsive noise. However, the performance of
both techniques is highly dependent on the selection of threshold values. The results
of the first technique showed that all wavelet types have approximately similar BER
performance except the Haar wavelet family which had superior BER performance in
most cases. Under the assumption of Bernoulli-Gaussian model for impulsive noise and
BPSK-OFDM scheme, it was found that both techniques could achieve performance of
BER of 1 x 10~ with 5 dB gain in SNR when the probability of impulsive noise oc-
currence (p = 0.001). Achieving higher performance requires lowering the probability
of occurrence. However, Assuming that there is an improper setting of the threshold
value below or near the signal level, the replacing technique showed more immunity to
errors. For a Haar DWT-OFDM, BPSK modulation and probability of impulsive noise
occurrence of p = 0.01, the replacing technique was able to improve performance by
80% above the unmitigated case while this was 30% for the blanking technique when a
threshold was set below 10% of its minimum value.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Multicarrier Modulation (MCM) is a widely used technique in broadband communica-
tion systems. This technique divides the transmitted data into several symbol streams
of lower data rate and then transmits these substreams adjacently through subchannels
after being modulated by subcarriers. The aim is to have bandwidth of each subchannel
below the coherence bandwidth of the total channel, leading to flat fading subchannels
(Goldsmith, 2005).

The most common scheme of MCM is Orthogonal Frequency Division Multi-
plexing (OFDM). Weinstein and Ebert (1971), made a major breakthrough in the imple-
mentation of multicarrier modulation. They proposed using Inverse Fourier Transform
(IDFT) for modulation and Discrete Fourier Transform (DFT) for demodulation. It may
be referred to as FFT-OFDM since the complexity of calculating N-DFT points can be
reduced using Fast Fourier Transform (FFT).

Wavelets and filter banks are alternative methods to represent signals. They have
been used in many applications like image processing and communication systems since
1980s. Unlike Fourier transform, wavelet transform uses short waves instead of long
waves. When transforming to the frequency domain in Fourier transform, time infor-
mation is lost. Wavelet transform was introduced to overcome this serious drawback
of Fourier transform since it becomes possible to know when an event has occurred.

Because of this and other properties of wavelet transform, they have been proposed in



some literature to replace FFT-OFDM systems (Strang & Nguyen, 1996).

Impulsive Noise (IN), characterized with short durations and very high ampli-
tudes, is identified as an impairment that degrades performance of communication sys-
tems. It could be generated from man-made or atmospheric made sources. These may
include switching noise, automobile engine noise, interfering electromagnetic pulses,
and so on. Buses, circuits that connect the main parts of a computer, and clocks produce
significant noise in laptop and desktop computers as well (Nassar, Gulati, DeYoung,

Evans, & Tinsley, 2011).

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE

Various types of noise can severely affect a wide range of communication systems.
One of these noise sources is impulsive noise. For example, in a high speed Digital
Subscriber Loop (DSL), impulsive noise sources may include lightning surges, vehicle
ignitions, engine noise, electromagnetic discharge, transmission and switching gears
(Zhidkov, 2006).

One of the studies on the effect of impulsive noise in ADSL found that without
mitigating impulsive noise, impulses on ADSL lines could be 20 — 40 dB larger than
either Additive White Gaussian Noise (AWGN) or near-end crosstalk; hence, a noise
margin of 6 or 12 dB is not sufficient to protect ADSL from impulsive noise. Similarly,
in Digital Video Broadcasting (DVB) systems, sources of impulsive noise seem to be
the same as those of DSL (Al Mawali, 2011).

In Power Line Communication (PLC) systems, impulsive noise is considered the
main reason for frames retransmission scenario (Zbydniewski, Zielinski, & Turcza, 29

2009-April 1). Unlike other communication environments, a channel in PLC is very



difficult to model (Al Mawali, 2011). It was found that the power spectral density
(PSD) of impulsive noise is 50 dB higher than background noise (Al Mawali, 2011). In
conventional OFDM systems (FFT-OFDM), it is required to add extra load, called the
Cyclic Prefix (CP), to compensate for a high degree of spectral overlap.

As stated in one of the IEEE 802.16.3 proposals, overhead in wavelet-OFDM is
less than of the FFT-OFDM because it does not require the addition of cyclic prefix. For
wireless transmission, FFT-OFDM has a cyclic prefix of 20%; hence, wavelet-OFDM
has an advantage of about 20% in bandwidth efficiency. Moreover, there is no need for
pilot tones in wavelet-OFDM systems; however, some Fourier-OFDM systems use 4
out of 52 subbands for pilots which provide additional 8% advantage for wavelet-OFDM
over FFT-OFDM implementations. Finally, unlike Fourier transform, wavelet transform
can convert an input domain of real numbers to an output range of real numbers; hence,
reducing the complexity of computation. Because wavelet-OFDM has higher spectral
containment, i.e., overlapping, between sub-channels than FFT-OFDM, wavelet-OFDM
is able to ameliorate the effects of narrowband interference and is more robust with
respect to intersymbol interference and intercarrier interference (Zhao, Zhang, & Yuan,
2004). While most works have considered only FFT-OFDM, our work is directed to

reduce the problem of impulsive noise in wavelet-OFDM.

1.3 SCOPE

This thesis focuses on wavelet-OFDM systems, particularly, the one which is described
in (Abdullah, Kamarudin, Hussin, Jarrot, & Ismail, 2011) with three different wavelet
families Haar, Daubechies-4 and biorthogonal-4.4. Majority of related works have con-

sidered mitigation of impulsive noise problem in FFT-OFDM systems. In this thesis,



the performance of FFT-OFDM compared with that of wavelet-OFDM in unmitigated
impulsive noise environment.

Other aspects and challenges related to OFDM systems in general, like peak to
average power ratio (PAPR) and frequency-timing offset are not considered in this work.
The performance of a communication system is well- characterized by two curves,
namely, spectral efficiency and bit error rate curves. However, this work focuses on

performance in terms of bit error rate only.

1.4 RESEARCH OBJECTIVES
The following are the objectives of this work:
1. To evaluate the performance of the system in terms of bit error rate (BER)
and signal to noise ratio (SNR).
ii. ~ To compare the system performance using different wavelet families.

iii.  To develop a technique capable of mitigating impulsive noise in wavelet-

OFDM system.

1.5 RESEARCH METHODOLOGY

The research starts with a literature review to cover basic concepts of the topic and
related works in the area. After gaining enough background of the problem under in-
vestigation, a system model to be simulated and analysed. This will be followed by a
study of the effect of impulsive noise in both wavelet-OFDM and Fourier transforms
based OFDM systems. Benefiting from other works in the area, a technique will be
developed to mitigate impulsive noise in wavelet-OFDM systems. The methodology of

this research is shown in a flow chart diagram in Figure 1.1
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Figure 1.1: Research methodology.



1.6 THESIS ORGANIZATION

This thesis is divided into six chapters. Chapter 1 is the introduction and contains
background, problem statement, research methodology and the objectives. Chapter 2,
presents a literature review, principles and related works. Selecting a communication
system for simulation and taking into consideration certain assumptions, tools, environ-
ments and MATLAB implementation of some important functions used in the study are
covered in Chapter 3. Chapter 4 presents a performance study of OFDM systems for
both Fourier transform and wavelet transform based OFDM systems. The main objec-
tive of the thesis, mitigating impulsive noise in wavelet-OFDM system:s, its performance
study and comparison are presented in Chapter 5. Chapter 6 ends with the conclusion

of the work, short comings and future work.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

A literature study is presented in this chapter covering basic concepts and principles of
multicarrier modulation (MCM), practical implementation of MCM and the common
techniques addressed to alleviate the effect of impulsive noise in MCM systems. The
chapter is divided into seven sections. In Section 2.2, a literature review of multicar-
rier modulation technology is presented covering the basic principles and underlying
theories of MCM systems. Section 2.3 explains the principle of Fourier based OFDM
and the concept of cyclic prefix. Its counterpart, wavelet based system, is covered in
Section 2.4 along with underlying theory of wavelet and filter banks. Impulsive noise
definition, classes, statistical models and its effect on communication systems is pre-
sented in Section 2.5. A literature review of impulsive noise mitigation techniques is

presented and evaluated in Section 2.6. Finally, Section 2.7 summarizes this chapter.

2.2 MULTICARRIER MODULATION

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum

urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien
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Figure 2.1: Block diagram of MCM transmission (Yang, 2009).

est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices biben-
dum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla.
Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu,
accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
(Goldsmith, 2005),(Schulze & Liiders, 2005), (Bingham, 1990) and (Hara & Prasad,
2003) Figure 2.1 shows one possible configuration of MCM. First, a bit stream of data
is divided into N substreams using a serial-to parallel converter (S/P). Then, each sub-
stream is mapped into symbols s; = a; + jb; (e.g. QAM or PSK mapping). By using an
appropriate pulse shaping, each substream of symbols is modulated via a subcarrier f;.
Summing all the output from each branch, the transmitted signal, s(), can be written as

(Yang, 2009):

s(t) =Y Rl 2.1
=Y R[(a;+ jb;)e*™]

= [ajcos(27fit) — b;sin(27 fit )] 2.2)



2.3 FOURIER BASED OFDM MODULATION
2.3.1 Cyclic Prefix
2.4 WAVELET BASED OFDM MODULATION
2.4.1 Filter Banks

Figure 2.2 shows the response of a simple lowpass filter. This can be illustrated by the

Magnitude Frequency response of Haar lowpass filter: [1/2 1/2]

-

© © o o
® N © ©
T T T

Fourier transform magnitude
o
(52

0.4
0.3
0.2
0.1

0 i i i

-1 -0.5 0 0.5 1

Angular frequency (normalized by w)
Angle Frequency response of Haar lowpass filter: [1/2 1/2]
2 T T T

Fourier transform Angle ¢()

= Z05 0 05 1
Angular frequency (normalized by 7))
. I N
Figure 2.2: Frequency response of the lowpass filter: Hy(®) = 5 + ¢ Jo

following matrix operation:



[ : ] x[:()]
10000 x[1] x[0]
(12)x[n] = 00100 x[2]| = |x[2]
00001 x[3] x[4]

i | x[4] .

In general, if x[n] is an input to upsampling operation by L, the output y[n] is:

x[n/L], n=mL

yln] = (2.3)

0, n # mL
2.4.1.1 Haar Filter Bank

roln] = = (xln] +xln — 1))

Yo [n] =Ty [211]
1

voln] = 7 (x[zn] Fx2n— 1]> (2.4)

Similarly,

1

yiln] = G (x[zn] —xn— 1]) (2.5)

2.4.1.2 Perfect Reconstruction and General Structure of the Two Channel Filter
Banks

1 p_] p+k_1 k —(p—1)+k 11 \ok
0(z) = ] kZ‘b( L )(_1) 7~ (=D +k(=—) (2.6)
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2.4.2 Scaling and Wavelet Functions
2.4.3 Wavelet Families

Table 2.1 shows the differences between wavelet and Fourier transforms.

Table 2.1
Some differences between wavelet and Fourier transforms (Barford et al., 1992).

Fourier Transform Wavelet Transform
“Root” function e/ s 2w(=E)
Continuous Transform flw) = [, f(t)e /¥ dt w= " f(t)s™Pw(=E)
i has i
Time transformed to amplitude and phase amplitude . for each
for each frequency scale and time
Input domain RorC RorC
Output range C RorC
Localization in frequency Yes Yes
Localization in time No (Limited with STFT) Yes
Time for fast discrete transform O(nlogn) O(n)
Number of non-redundant out-
. n n
puts of discrete transform

2.4.4 Different Implementation of Wavelet Based OFDM

2.4.4.1 Multiscale Wavelet Modulation (MSM)

2.4.4.2 Wavelet Pulse Shaping of PAM

2.4.4.3 Wavelet Packet Modulation (WPM)

2.4.4.4 Overlapped Discrete Wavelet Multitone Modulation (DWMT)

2.4.5 Cyclic Prefix in Wavelet Based OFDM Systems

Figure 2.3 shows the frequency responses for six subchannels for a discrete multitone
(DMT), which is a Fourier based OFDM, and a discrete wavelet multitone (DWMT).
Figure 2.3b is a particular type of wavelet with g = 8, where g is the overlap factor. It is

clear that DWMT has better spectral concentration than DMT.
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Figure 2.3: Frequency response of six subchannels (Sandberg, 1995).
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2.5 IMPULSIVE NOISE (IN)

2.5.1 Statistical Models for Impulsive Noise

2.5.1.1

2.5.1.2

2.5.1.3

2.5.14

2.5.1.5

Binary-State Model
Bernoulli-Gaussian Model
Poisson-Gaussian Model
Middleton Class A Model

Symmetric Alpha Stable (Sa.S)

2.5.2 Impulsive Noise Effect on Communication Systems

2.5.2.1

2.5.2.2

Digital Subscriber Loop (DSL)

Digital Video Broadcasting (DVB)

Table 2.2 shows DVB standard specifications (Woo et al., 2012).

Table 2.2
DVB standard specification (Woo et al., 2012).

DVB-T DVB-H DVB-T2 DVB-S2
_ QPSK, QPSK, 125%/] QPSK, 8PSK,
Modulation 16QAM, 16QAM, MQAM' 16APSK,
64QAM 64QAM 2560AM 32APSK
BCH + LDPC
CC+RS CC+RS BCH + LDPC 14, 1/3, 2/5,
PHY FEC 12, 2/3, 3/4, 1/2, 2/3, 3/4, 1/2, 3/5, 2/3, 12, 315, 2/3,
7/8 7/8 3/4, 4/5, 5/6 3/4, 4/5, 5/6,
8/9, 9/10
: 1k, 2k, 4k, 8k,
FFT Size 2k, 8k 2k, 4k, 8k 16K, 32k
1/4, 19/256,
Guard 1/4, 1/8, 1/16, 1/4, 1/8, 1/16, 1/8, 19/128,
Interval 132 1/32 1/16, 1/32,
1/128
PHY/Link MPEG-2 TS MPEG-2TS BaseBand BaseBand
Layer I/F Frame Frame
Link Layer MPE GSE GSE
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2.5.2.3 Power Line Communication

Tables 2.3 shows the parameters for FFT-OFDM PHY.

Table 2.3

FFT-OFDM PHY (Galli & Logvinov, 2008).

Communication method

Fast Fourier transform (FFT) OFDM

FFT points 3072, 6144
Sampling frequency

(MHz), respectively 75,150
Symbol length (ts) 40.96

Guard interval (us)

Variable according to line conditions: 5.56, 7.56,47.12

Primary modulation (per
subcarrier)

BPSK, QPSK, 8—, 16—,64—,256—,1024—, and 4096—QAM

Frequency band (MHz)

2 — 30 (optional bands:2 —48 and 2 — 60)

Error correction

Turbo convolutional coding

Maximum transmission
speed (Mb/s)

545 (8/9 CTC)

Diversity modes

Normal ROBO, mini ROBO, high-speed
ROBO, and frame control

2.5.2.4 Wireless Communications
2.6 IMPULSIVE NOISE MITIGATION TECHNIQUES

2.7 SUMMARY
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CHAPTER 3

SYSTEM MODELLING

3.1 INTRODUCTION
3.2 OFDM SYSTEM
3.2.1 Wavelet-Based OFDM System

s = conv(dyadup(xa),f0) + conv(dyadup(xd),fl);

while the analysis side (receiver) is implemented as:

xa = dyaddown(conv(s,h0))

xd = dyaddown(conv(s,hl))

where the command ‘conv’ is a convolution operation, ‘dyadup’ and ‘dyaddown’ are,
respectively, upsampling and downsampling (by 2) operations, fO and f1 are the lowpass
and the highpass filter coefficients, respectively, of the synthesis side; hO and h1l are
the lowpass and highpass filter coefficients of the analysis side. All these terms are

discussed in Section 2.4.

3.2.1.1 Haar
3.2.1.2 Daubechies-4 (Db2)
3.2.1.3 Biorthogonal-4.4 (Bior4.4)

Figure 3.1 shows properties of this wavelet.
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Figure 3.1: Properties of ‘bior4.4’ wavelet.



CHAPTER 4

PERFORMANCE OF THE OFDM SYSTEMS OVER AWGN &
IMPULSIVE NOISE

4.1 INTRODUCTION

4.2 PERFORMANCE OF OFDM SYSTEMS OVER AWGN

4.2.1 Analysing the Performance of OFDM Systems

4.2.2 Considerations for Signal Energy Calculations in OFDM Systems
4.2.2.1 Signal Energy Calculations in FFT-OFDM

4.2.2.2 Signal Energy Calculations in DWT-OFDM

4.2.3 Monte Carlo Simulation

4.2.3.1 Procedures of Monte Carlo Simulation

4.2.4 Simulation Results and Analysis

Table 4.1
Results of OFDM systems in AWGN channel.

Required SNR to achieve
Scheme SER=10"> BER=10"

BPSK 9.5dB 9.5dB
QPSK 13dB 12.5dB
16-QAM 20 dB 19.3dB
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Procedure 4.1 Monte Carlo Simulation (FFT-OFDM)
procedure CALCULATEBITERRORRATE (BER)
Nppr = 64,Ny = 52,N¢), = 16
nSymbols = 5000;

nBits = nBit perSymbol x nSymbol,
SNR=1[0:2:20],,,

N,
SNRpFTeff = SNR+ 101logo(———) + 101og,(
Nrrr
for i=1:length(SNR) do

ipBits — X;

Xn = ifft(Xi)
Sk = Xn+x,(49 : 64)

1
wy = —=(randn(1,length(sy)) + j* randn(1,length(sy))

V2

Nrfpr
Nep +Nrrr

nSymbolsError < Y; # X;

Y; — opBits

nBitsError < ipBits # opBits
end for

SER — nSymbolsError

nSymbols X Ng

nBitsError
BER= ———
nBits

end procedure

4.3 PERFORMANCE OF THE OFDM SYSTEMS OVER BOTH AWGN & IN
CHANNEL

4.3.1 Varying Both SNR and SINR (0; = fo})
4.3.2 Fixing SNR Varying SINR
4.3.3 Fixing SINR Varying SNR
4.3.4 Simulation Results and Analysis
4.3.4.1 Results Obtained By Maintaining: Gé? = fo?
Figures 4.1, 4.2 and 4.3 show the results obtained accordingly.
From Figure 4.1a, for example, ‘heavily-disturbed environment’, p = 0.1, and
high impulsive noise power (Gg — 1002), it can be seen It is reduced in cases of increas-

ing the impulsive power; for example, when (Gg2 = IOOGVZV) (Figure 4.2a),FFT-OFDM
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curve moves closer to the AWGN when decreasing the probability of occurrence, for
example, it has the same performance for AWGN to achieve 10~* (Figure 4.1c). (Fig-
ures (4.1c) and 4.2c). DWT-OFDM is superior in performance in regions of low BER.
The best performance of DWT-OFDM was achieved in the simulation compared to FFT
is the situation when very high IN power in an environment weakly-disturbed by IN; for
example, 4.3¢c where at SNR= 10 dB DWT could achieve BER of 1 x 1073, while it is

1 x 1072 for FFT-OFDM. Table 4.2 summarizes theses results.
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BPSK OFDM over AWGN & IN channel, (p= 0.1, 0';: 100%)
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Figure 4.1: Performance of BPSK OFDM systems in AWGN & IN (67 = 100, with
different values of occurrence probability, p).
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BPSK OFDM over AWGN & IN channel, (p= 0.1, cé: 1000%)
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Figure 4.2: Performance of BPSK OFDM systems in AWGN & IN (o7 = 1000, with
different values of occurrence probability p).
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Figure 4.3: Performance of BPSK OFDM systems in AWGN & IN (67 = 10000, with
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Table 4.2

BPSK OFDM performance under AWGN & IN, o7 = fo,.

SNR at BER = 10~

Same (DWT &

FFT)

perfor-

Best DWT per-
formance point

mance region or  (compared to
P point FFT)
AWGN DWT FFT
(BER of DWT) (BER of FFT) (BER of DWT) SNR BER SNR - BERpwr
0.1 18%51((1)]%2 15'% aB 3 ><1120—3 =6dB 3x102 =0dB 1x107!
2 __ 2
o =100, 01 122 (11373 13 db 18%81‘(1)]1 <2dB  3x1072 . .
0.001 28%51%]%4 9'5_dB 28%5]‘(1)]?4 <6dB  1x1073 - -
0.1 68%51%]?2 25_dB 7 ><1190*3 =12dB =4x10"2 =4dB 1x107!
2 __ 2
o; = 10005 78).(51;1)]%3 22.5_ dB 31151 (()1133 _9dB  —6x10-2 ) )
0.001 88%51‘(1)]?4 18_dB 5 1><1 1%13,4 <6dB 1x1073 - -
0.1 78%51((1)132 35_dB 721'5181133 =22dB =4x10"2 =4dB 1x107!
2 _ 2
oF =100007 g BB, 33 B o8 s =ex107 .
0.001 88%5 1%134 28_dB 6153(51 gﬁ =16dB  6x107* - -




CHAPTER 5

MITIGATION OF IMPULSIVE NOISE IN DWT-BASED OFDM
SYSTEMS

5.1 INTRODUCTION

5.2 MITIGATION OF IMPULSIVE NOISE USING BLANKING TECHNIQUE
5.2.1 Threshold Selection

5.2.1.1 Fixed Threshold

5.2.1.2 Optimized Threshold

Algorithm 5.1 Finding the optimum threshold

procedure FINDOPTIMUMTHRESHOLD (T 0r;)
SNR=1[0:2:20],T;;,=[0:0.1:7]
for i=1:length(SNR) do
for j=1:length(T;;) do
procedure CALCULATEBITERRORRATE (BER(T}y, ;))
end procedure
end for
Topt,i = Tin(j) <= minimum(BER(Ty, ;))
end for
end procedure
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5.2.1.3 Expected Threshold

5.2.2 Simulation Results and Analysis
5.2.2.1 Results of Fixed Threshold
5.2.2.2 Results of Optimized Threshold
5.2.2.3 Results of Expected Threshold

5.3 IMPULSIVE NOISE MITIGATION USING THE REPLACING TECHNIQUE
FOR HAAR DWT BASED OFDM

5.3.1 Simulation Results and Analysis
5.4 PERFORMANCE COMPARISON

5.5 SUMMARY
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION
6.2 KEY FINDINGS, CONTRIBUTIONS AND SHORT COMINGS

6.3 FUTURE WORK
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APPENDIX A

BIT ERROR RATE (BER) FOR BPSK MODULATION

input BPSK BPSK Output
—
{17 0} Mod Demod {1 0}

Figure A.1: BPSK transmitter and receiver.

In Binary phase shift keying scheme, the input bits 1 and O could be represented by two
analogue levels; v/E}, for symbol 1 and —+/E}, for symbol 0. Figure A.1 shows a block
diagram for a typical BPSK transmitter and receiver.

When the signal is to be sent over the channel it will experience noise n, which
is additive white Gaussian noise.

The received signal:

sy +n, ifbit 1 is transmitted
y =

so+n, if bit 0 is transmitted

The conditional probability distribution function (PDF) (Figure A.2) of y for the two

signals are:

1 *(H\/@)z

fy/so) = \/ﬂ_Noe No (A.1)
1 —0—VE)

fy/s1) = \/717_]\706 No (A.2)



S0 S1

Figure A.2: The conditional probability distribution function with BPSK.

. . . N 1
Assuming an equiprobable transmitted bits, i.e, P(s;) = P(sg) = X the thresh-
old 0 is the optimal decision boundary. if the received signal is greater than the thresh-
old, the receiver decides s; was transmitted, otherwise, it decides that s is transmitted.

mathematically;

y>0=s

y<0=s0
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The probability of error given s was transmitted:

flels1) =

where

2 7 2
erfc(x) = — / e " dx
Nz
X

is the complementary error function.

Similarly, the probability of error given sg is transmitted

1 /oo —(H—@)Z
e

= No d
e = g y
1 /oo _2
= — e “dz
NG
Ep
No
1 E
:Eerfc( —Z)

The total probability of bit error:

By = P(s1)f(els1) + P(s0)f (e|so)
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APPENDIX B

SYMBOL ERROR RATE (SER) FOR QPSK MODULATION

)
F(=1+7) VB (H1I+])
530 520
r
S0 S10
VE(1-9) Vi -3)

Figure B.1: QPSK constellation.

Assuming the alphabets used for QPSK are appsg = {£1 =+ 1}, the constellation di-
agram for QPSK is shown in Figure B.1. The factor \/% is a normalization factor,
i.e, to normalize the average energy of the transmitted symbols to 1, assuming that all
symbols are equiprobable.

The conditional probability distribution function (PDF) of y given s, was trans-

mitted (Figure B.2):

f(v/s2) = e M (B.1)

From figure B.2, symbol s is detected correctly if y falls in the hashed area, i.e.,

flels2) = f(R{y} > Ols2) f(S{y}]s2) (B.2)
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A

S0 S1

Figure B.2: Conditional pdf for real part (QPSK) being in error (dark area).

Probability of real part of y >0, given s, was sent (i.e, dark area) is:

0 (o
F@RY) > 0ls2) =1 m/ e M dy (B.3)
1 E
=1- Eerfc( 2N0> (B.4)

Similarly, for the imaginary part of y (Figure B.3):

SK \/;%-H-]

>
R

Figure B.3: Conditional pdf for imaginary part being in error (dark area).

1 0 S{y} 5’

1 E,
—1- 5erfc( 2N0) (B.6)
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The probability of s, being decoded correctly is,

=[BT

2 E 1 E

[ 2\ 2vg ) T A\ 2y
E 1 E
rely ang ) T A\ 2w

P, opsk =1 — f(cls2)
E 1 E
eV ang ) T2\ 2
E 1 E
NV N/ a5 Wy

For higher values of E;/Ny, the approximated equation is:

~ erfc
e,0PSK N
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APPENDIX C

SYMBOL ERROR RATE (SER) FOR 16-QAM MODULATION

SJ Ea'ug
.80 081 T . g 3
JEavg
. - 100 86 .
5 5
4 »E(w_q 73 Ecwg
, \ 10 10
g /B B R
\ 10. L] S O .
S8 59 _ Etwg 1l
10
.812 .813 T .814 L]
_g|Buwg | 10
10
R
Figure C.1: 16-QAM constellation.
The average signal energy is given by:
M
Eavg = Z mem (C.D
m=1
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where pm is the message probability. E,, is symbol energy for message m, M is the
modulation order, for 16-QAM, M = 16. If all symbols have the same probability (e.g
equiprobable message) the equation (C.1) becomes:

5
Eavg — Edz (C2)

where d is the minimum distance between two consecutive constellations. In terms of

average energy per bit Epqy,:

Eavg
E = C3
bavg 10g2 M ( )
d Eqvg
Z /e C4
2 10 €4

The alphabets of a 16-QAM modulation scheme are:
o={t1++1j,+++3j,+++3j,£++£1;}
The conditional probability distribution function (PDF) of y given s5 was trans-

mitted:

e No (C.5)

f(y/SS): \/7'5_]\7()

From figure C.1, symbol s5 is detected correctly if y falls in the horizontally

flclss) =f (%{y} <0, Ry} > -2 ElL(v)g Ss)-
f(S{y} >0,3{y} < w%@

shaded area, i.e.,
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Using the relation:

Eavg Eug
flclss) = [1 —erfc( 10]\;’())] [1 —erfc( 101\?())] (C.6)

The probability of error for ss is:

2

flelss) =1— (C.7)

E
1 o rf avg
ec( 1ww>
Eavg
~ Derfe | ) 228 C8
erc(\/ 10N0> (€.8)

The conditional probability distribution function (PDF) of y given s3 was trans-

mitted is:

2

) ]
\/n_NOe 0 (C.9

fOv/s3) =

From Figure 6, symbol s3 is detected correctly if y falls in the crossed shaded

)

area, i.e.,

Eavg
10

flcls3) = f(iﬁ{Y} >2 S3)f(3{y} >2 ﬁa(v)g

Using the relation:

(C.10)

| — —erf
[ 2erc< 10N0)

1 E
_ — erf avg
flc|s3) [1 Ser c( 10N0>
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The probability of error for s3 is:

2

(C.11)

1 Eae
=1—|1—zerf 8
flels3) [ 2( mNO)

Eqy
~erfc| [ =8 C.12
erfc ( 10N0> ( )

The conditional probability distribution function (PDF) of y given s1; was trans-

mitted:

fy/sn) = e N (C.13)

From figure C.1, symbol s;; is detected correctly if y falls in the vertically shaded area,

1.e.,

f(C|S11) :f(i)i{y} >2 Ela(\;g s11>f<3{y} S O,3{y} > —2\/ EIL(‘;g)SH)

Using the above two cases as reference

fle|si) = [1 - %erfc (%)

The probability of error of sy :

(C.14)

| E
1 —erfc —avs
10Ny

1 Eavg Eavg
S . 1 —erf 1
fle|si1) =1 [1 2erfc< 10N0> [ erc< 10N0>] (C.15)
3 Euve

~ Derfe| /228 C.16
2“C< 1m%> (€.16)
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The total symbol probability of 16-QAM:

3 E, .
P ~ —erf 48 1
e,160AM ~ 5 ¢ C( 10N0> (C.17)
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