This exam contains 3 pages (including this cover page) and 5 questions. The total number of possible points is 15 . Enter your answers in the space provided. Write your final answer on the "Solution" line for each problem, where appropriate. Otherwise, draw a box around your final answer. Complete your solutions to the "show your work" problems on the page indicated.

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations may still receive partial credit.
- Provide exact answers unless otherwise instructed.
- Simplify all answers as much as possible. This means that you need to need to combine like terms, reduce fractions, etc. (You do not need to rationalize denominators.)
- Be sure to state units for applied problems.
- Clearly identify your answer for each problem.

Do not write in the table to the right.

1. (4 points) Let $f(x)$ be the following expression, $f(x)=48 x+14$. Determine if $f(x)$ is an element of the set of polynomials.

YES NO
If you circled "YES," write a paragraph indicating why $f(x)$ is an element of the set of polynomials. If you circled "NO," write a paragraph indicating why $f(x)$ is not an element of the set of polynomials.
2. (2 points) Find the zeros of $f(x)=x^{3}-x$, then construct a rough graph of $f(x)$.
3. (2 points) Find the zeros of $g(x)=x^{2}-16$ and then construct a rough graph of $g(x)$.
\qquad
4. (3 points) What is $5 \cdot 3$?
A. 8
B. 15
C. 2
D. none of the above
5. (4 points) What is $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for the equation $z=t \cdot s$.
$\bigcirc t$I don't know
\qquad

