Weakly nonlinear dynamics of dunes
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ABSTRACT: Weakly nonlinear analyses have proved their validity in the field of morphodynamic instability
to describe the evolution of finite amplitude perturbations of the bed topography. In a recent study, Colom-
bini and Stocchino (2008) analyzed theoretically the case of dunes and antidunes that develop, under suitable
conditions, in an infinitely wide open channel with an erodible bottom composed by uniform sediments. By
introducing a slow timescale in the analysis, they derived an amplitude equation of the Landau-Stuart (LS) type,
which describes the nonlinear evolution of a linearly unstable perturbation in the neighbourhood of its marginal
conditions. The analysis of the steady solutions of the amplitude equation shows that, for values of the ratio of
the shear velocity to the depth-averaged velocity of practical interest, dune bifurcation is supercritical, whereas
antidune bifurcation is subcritical. Introducing also a slow spatial scale, an amplitude equation of the Ginzburg-
Landau (GL) type is eventually derived, which describes the temporal as well as the spatial modulation of
marginally unstable dunes. The weakly nonlinear dynamics of a narrow spectrum of unstable waves centered
around the critical wavenumber is then analysed, whereby Landau theory is limited to the temporal evolution of
the critical mode. Moreover, it is possible to study the stability of GL solutions against general perturbations in
contrast to the LS theory where only the stability against perturbations with exactly the critical wavenumber can
be analyzed. Periodic solutions of the GL amplitude equation can either be stable, which means that a periodi-
cally modulated pattern will emerge, or unstable. In fact, the group velocity of the unstable wavepacket depends
on the wavenumber; therefore, local convergence and divergence of the perturbations occurs, possibly causing
the periodic solution to become unstable. This depends on the coefficients of the Ginzburg-Landau equation,
which in turn are related to the relevant flow and sediment parameters, namely the Froude number and the ratio
of grain size over flow depth.

1 INTRODUCTION inal studies on this subject were published (Kennedy
1963, Reynolds 1965). This research field is still quite
active (ASCE 2002) and several morphodynamic pat-

1.1 Type area . . . .
P terns have been investigated making use of techniques

Dunes appear in the so-called lower flow regime cor-
responding to small values of the Froude number
and are characterized by downstream propagation and
by being almost out of phase with respect to water-
surface gravity waves. On the contrary, antidunes oc-
cur in the upper flow regime, i.e. for values of the
Froude number close to unity, and typically propagate
upstream, being almost in phase with free surface os-
cillations. In both cases, the main geometrical mean
flow depth. The idea that bedform formation in rivers
can be interpreted in terms of an instability process
of the system composed by the flow and the erodi-
ble bed dates back to the sixties, when the first sem-

imported from the field of hydrodynamic stability.
Linear analyses allow for the definition of unstable re-
gions in the parameter space where bedforms are ex-
pected to form (Engelund 1970, Fredsge 1974, Cole-
man & Fenton 2000, among others) and to an indica-
tion on the wavelength and celerity of the most unsta-
ble disturbances. No information is gathered on bed-
form amplitude at a linear level, however. More re-
cently, Paarlberg et al. (2007) used a parametrization
of the separation streamline to avoid modelling the
flow and sediment transport in the separation zone
itself and successfully used this concept in a model
to compute dynamic roughness due to dunes (Paarl-
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Figure 1: Sketch of flow configuration

berg et al. 2009). Extending previous linear stud-
ies (Colombini 2004, Colombini & Stocchino 2005),
Colombini & Stocchino (2008) presented a temporal
weakly non linear analysis of dunes and antidunes.
In the former case, an equilibrium amplitude is ob-
tained, which compares satisfactorily against experi-
mental observations. In the present contribution, the
work of Colombini & Stocchino (2008) is extended
to describe the spatial modulations of wave packets
(which is a natural extension of the theory).

2 FORMULATION OF THE PROBLEM

Let us consider a uniform turbulent free surface flow
in a infinitely wide straight channel. The triplet com-
posed by the fluid density p, the mean friction velocity
u and depth D* of the unperturbed uniform flow has
been used for nondimensionalization. In the follow-
ing, variables with a star superscript are to be intended
as dimensional variables.

Moreover, we define a nondimensional conduc-
tance coefficient C' as the ratio between the unper-
turbed depth-averaged velocity U and the mean fric-
tion velocity u%, which can be related to the flow
depth and the sediment diameter d through the
Keulegan equation (ASCE 1963) for fully rough tur-
bulent flow:

U1 11.09D*
C_*_m1n<2.5d§>’ W

Uy
where k is the Von Karman constant, taken as 0.4, and
the roughness height has been set equal to 2.5d} after
(Engelund and Hansen 1967).

A sketch of the coordinate system adopted is shown
in figure 1, where the flow is bounded between the
two lines y = R(z,t) and y = R(x,t) + D(x,t), with
D the local flow depth. The lower boundary is set at
the reference level R, where the velocity is assumed
to vanish.

The differential system (6) is associated with an
appropriate set of kinematic and dynamic boundary
conditions at the domain boundaries. The Reynolds
stresses are modelled through a Boussinesq closure
that implies the evaluation of an algebraic eddy vis-
cosity (1), based on the mixing length approach.

The function ® is known to depend on a dimension-
less form of the bed shear stress, namely the Shields
stress 6,. Results are only moderately affected by the
choice of a particular form for the function ®. In the

following, the classical Meyer-Peter & Miiller (1948)
formula:

O =An(0,—0)2  0,>0, 2)
has been employed, where 6. is the critical Shields
stress for incipient motion. The values of 6. and A,,
have been set equal to 0.0495 and 3.97, respectively,
in accordance with the corrections proposed by Wong
& Parker (2006) in their revisitation of the work of
Meyer-Peter & Miiller (1948). In addition, the effect
of gravity on the grain motion is included by setting
the critical Shields stress 6. equal to:

0, =0.0495 — /(S — Ry, 3)

where 4 is a dimensionless constant set equal to 0.1
after (Fredsge 1974).

Finally, the transformation (z,y,t) — (&, n,7) is
introduced that maps the flow domain into a rectan-
gular domain.

3 LINEAR THEORY

In this section we briefly summarize the essential
steps of the linear theory, referring for a detailed de-
scription to Colombini & Stocchino (2005). The anal-
ysis is performed in terms of normal modes, which
implies that a generic function is expanded as:

G(fvn’ T) = G0(77) + 6G1(€a7777_)7 “4)

where € is a small parameter.

3.1 Section 2

Moreover, we set where A,k and w are the ampli-
tude, wavenumber and complex celerity of the bed
perturbation, respectively and c.c. stands for complex
conjugate. Expanding each variable in the governing
equations, boundary conditions and turbulent closure
model and collecting terms at the same order, we are
left at O(e) with the following differential problem

3.1.1 Section 3

Thus, Z;; is expressed as a linear combination of two
linearly independent solutions of the homogeneous
initial value problem

LLnZY =0, (5)

which satisfy the boundary conditions at the lower
boundary, plus particular solutions of the non-
homogeneous differential systems:

LLnZ) =Dy, LDz =Ry, (6)

again satisfying the lower boundary conditions. With-

out loss of generality, the constants c§11> and cﬁ) are
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Figure 2: Regions of instability for dunes, antidunes and roll waves; C' = 20, f = 0.02. The dashed lines in the close-up pictures

correspond to the lines of maximum growth rate.

chosen so as to represent the amplitude of the per-
turbed tangential and normal stresses at the reference
level, respectively.

Three separate eigenvalues display unstable re-
gions in the (k — F') space (see Figure 2): two of
them can be readily associated with the formation of
dunes and antidunes, while the third describes the in-
stability of fast sediment waves that appear at high
Froude numbers (i.e. F' > 2) associated with the pres-
ence of roll-waves. The antidune mode is character-
ized by a small negative celerity (upstream propaga-
tion) while the dune mode propagates downstream
(positive celerity). The free surface and the bed os-
cillations are found to be approximately in phase for
antidunes and out of phase for dunes, with a small lag
coherent with the corresponding direction of migra-
tion.

For each value of the coefficient C, two criti-
cal points can be identified in the stability plot, say
(Kea, Frq) and (keq, Froq), Which are circled in the
close-up pictures of figure 2. They identify the on-
set of instability for each mode, since, as the Froude
number equals F,; (F.,), the basic plane bed solution
loses stability towards periodic perturbations charac-
terized by wavenumber k.4 (k.,), which represent the
bedform. The critical Froude number for roll-wave in-
stability F, is found in the long wave limit £.. — 0.

4 WEAKLY NONLINEAR THEORY

We intend to investigate the weakly nonlinear evolu-
tion of the perturbations of the flow-bed system in a
neighbourhood of the points (k.q, Frq) and (keq, Fro)
shown in figure 2. We then define:

F=F.(1+F), k= ko(1+ eky), (7)
where the subscript ¢ indicates either of the critical
points, whereas F5 and k; are dummy parameters that

define the extension of the neighbourhood in the F
and k directions, respectively.

In order to investigate the modulation of a basic
critical wave with wavenumber k. and celerity w. we
employ a multiscale perturbation technique and de-
fine a slow time scale 7" and a slow spatial scale X
such that:

T = é*T,

X =¢€(&—cy7) )

where ¢, is the group velocity of the wave packet.
Derivatives with respect to 7 and £ become, respec-
tively:

o 9 o
ar or “ar T ©)
0 0 0

o¢ ~ Toxoe (10)

We then expand the solution in the form:
G(&n, 7, X,T) =Gy + €Gy + €G; + G, (11)

and collect terms at the various order of approxima-
tion in e.

4.1 O(e")

At the linear level, the structure of the solution is anal-
ogous to (12):

G1 :A(X,T)G11E1+C.C., (12)
where, in general:
En = eXp[nikc<€ - WCT)]a (13)

and the complex function A(X,7’) is now a slowly
varying function (in time and space) to be determined.
The differential system (13) is recovered, with w = w,
and k = k.. As expected no information is gathered on
the amplitude A at this level of approximation.



42 0O(e?)
The structure of the solution at second order reads:

G2 - {A2G22E2 + C.C.} + |A|2G20 + FQGQOF +

+ {(A,X Gglx—FAgGll)El—{—C.C‘} (14)

Finally, note that in (14) a second, unknown ampli-
tude function A, appears. The latter is introduced as a
consequence of the non-uniqueness of the solution as
provided by the solvability condition we used for the
determination of the group velocity c,. It should be
noted that A, is unimportant for the subsequent anal-
ysis and can be left undetermined.

43 O(ée)

At third order the spatial dependence of the funda-
mental is reproduced and therefore we can write:

Gg = G31E1 + c.c.. (15)
and the related differential system reads:

LL1Z3;, = D3Dy+ RaiRyp + (16)

+ ArPY) + \A|2AP:(>,31) + A xx P
where the vectors P§11’3’4) are functions of 7 expressed
in terms of products of basic, leading and second or-

der components of the perturbations.
(P1,P3,P4)

Once the particular solutions Zs; of the non-
homogeneous differential systems:
ELIIZélfl,P3,P4) _ P§11’3’4), 17

are obtained, the boundary conditions at the free sur-
face and the Exner equation can be cast in a similar
way as (17) to give:

U -Cy = ARUY +(APAUY + (18)

+ A Ufo,ll) + A, xx Ué‘i)

where the first term on the right-hand side is generated
by the boundary conditions and by the Exner equa-
tion.

As before, since the homogeneous part of the sys-
tem (18) admits of a non-trivial solution, a solvability
condition has to be imposed. Having set:

§; = det(U)), (19)
where the array Uﬁ) is obtained by substituting the
vector Ui(fl) into the last column of U, we find:

01A,T +52F2A+53|A|2A—|—(54A,XX: 0, (20)

that, after some manipulations, takes the form of the
complex Ginzburg-Landau equation (CGLE):

A,T: OélFQA+O£2|A|2A+O(3A,XX. (21)

5 ANALYSIS OF GINZBURG-LANDAU
EQUATION

Setting a3 = 0 in (21), a Landau-Stuart equation is
recovered, which has been extensively studied for
the case of dunes and antidunes by Colombini &
Stocchino (2008). We briefly summarize in the fol-
lowing their main results. If the real part of the cubic
coefficient a; is negative, the bifurcation is termed su-
percritical and an equilibrium amplitude is eventually
attained as 1" — oo:
OC”{FQ

A= /— . (22)

-
Qy

For realistic values of the parameter, namely the
nondimensional conductance coefficient C', dune in-
stability is found to be supercritical, whereas an-
tidunes are consistently subcritical. In the latter case,
no information is gathered on the amplitude at the
present level of approximation.

We then limit our analysis of the CGLE to the case
of dunes, and, firstly, bring (21) into standard form by
means of a suitable transormation. Substitution of

i

A=A exp(iLT)A'(X', T') (23)
o
where
R
X' =[x T = o} FyT (24)
as

yields the rescaled CGLE (primes are dropped for
convenience)

Agp=A+ (1+ib)A,xx —(1+ic)|A?A. (25)

with

=" =2 (26)
o3 %)

Note that b > 0 and ¢ < 0 in the whole range of con-
ductance coefficients C' considered. This follows from
an analysis of the coefficients «; from equation (21)
where dune data from various experiments are used.

We consider periodic plane-wave solutions of the
form

A = Pexp(10), =KX -QT (27)

where P(X,T), ©O(X,T) € R. By substituting (27)
into (25) and collecting the real and imaginary parts,
we obtain
P?=1-K? O =KX — (bK*+cP)T (28)
This gives for every choice of K the amplitude and
shift in phase (with respect to the critical wave) of the
dunes. Due to the signs of b and c, it turns out that the
nonlinear dunes propagate slower when compared to
the linear theory.
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Now, periodic solutions of the type (27) need not to
be stable. The stability can be studied by considering
perturbations of P and O:

A =[P+ p(X,T)]expli(© + 0(X,T))] (29)

Substitution of (29) into (27) leads after linearization
to a system of partial differential equations for p and
6. We then set:

p(X,T) = oexpli(lX — AT, (30)
0(X,T) = dexpli(lX — A\T)], 31)

and end up with the algebraic homogeneous system:
(M — i) < s ) —0 (32)
for some matrix M. Stability of (27) is then reduced

to an eigenvalue analysis of M. This sets a condition
on K (the generalized Eckhaus criterion):

14 bc
2
— 33
34 2c2+be 33)
as long as the Benjamin-Feir-Newell criterion
1+bc>0 (34)

holds (for details on this stability analysis, see Schie-
len et al. (1993)). For the present case, the latter cri-
terion is never satisfied in the whole range of parame-
ters investigated. This means that none of the periodic
solutions of the type (27) is stable, the Stokes wave
(K = 0) being the last to become unstable. For the
special case of the Stokes wave, it can be shown that
for the eigenvalues of M holds:

N 214 12) — (1 + )1 = 21%(1 + be) = 0, (35)

By imposing that the imaginary parts of both eigen-
values of M for K = 0 (i.e. the Stokes wave) are neg-
ative the following condition on the wavenumber [ is
found:

—2(1+be)
> ==
12Ll=\ (36)

which implies that longer perturbations of the Stokes
wave are the most unstable (Stuart & Di Prima 1978).
In this case however, the Stokes wave itself is also
unstable.

Considering a slowly modulated Stokes wave, a
physical interpretation of this stability criterion (34)
can be found in Schielen et al. (1993). Since ¢ < 0 for
the present case, the dispersion relation (28) implies
a negative nonlinear correction of the (positive) bed-
forms celerity that is maximum at the top of the enve-
lope, so that the bedforms at either side of it propagate
faster. Therefore the bedforms on the downstream
side lengthen, whereas the waves at the upstream side
are shortened. This is associated to a positive varia-
tion of the group velocity ¢, with the wavenumber £
that implies an accumulation of energy at the top of
the envelop, a necessary condition for instability to
occur.

A natural question to ask is then what pattern of
dunes will evolve in the case of an unstable Stokes
wave? Due to the instability of the Stokes wave, the
Ginzburg-Landau equation does not allow for a pure
periodic pattern of dunes. Instead, it is more likely
that a quasi-periodic pattern will occur. Solutions of
the Ginzburg Landau then describe the envelope of
the dune-evolution (because the amplitude equation
depends on a slow time and spatial variable). To
see whether this indeed occurs, a spectral analysis
of (25) can be performed. In Doelman (1991), it is
shown that, depending on the values of the coeffi-
cients, chaotic solutions (for the envelope) are possi-
ble, through a classical scenario of period doublings.
This however, is not of particular importance for field-
studies of dunes. Also quasi-periodic solutions for the
envelope already give a very irregular sequence in the
amplitude of dunes.

6 CONCLUSIONS

The linear analysis of dunes, leading to regions of in-
stability as depicted in figure 2 can be extended to a
weakly nonlinear analysis in a straightforward way.
For dunes, this leads after tedious calculations to a
nonlinear amplitude equation of the Ginzburg Landau
type. The bifurcation for dunes at F,; is supercritical.
Hence, starting with a flat bed, for decreasing Froude
number, dunes start to evolve, and their nonlinear evo-
lution can adequately be described by the solutions of
the Ginzburg-Landau equation. Simple periodic so-
lutions turn out to be unstable, however. This sug-
gests that more complicated behaviour of dunes will
emerge: the moving dunes show an increase and de-
crease in amplitude as they evolve in time and space.
Their migration speed is also slightly less than pre-
dicted by linear theory.

Although not shown in this paper, a similar analy-
sis can be done for anti-dunes. In that case, however,
it turns out theat the bifurcation is subcritical. This
means that the flat bed looses stability for F' > F,,
but the bifurcating solution is also unstable. In that
case the perturbation analysis of section 4 must be ex-
tended to fifth order, which eventually yields a quin-
tic version of the CGLE. Besides antidunes, there are
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other phenomena in nature that exhibit a similar be-
haviour (Plane Poiseuille flow and Taylor flow, for in-
stance). Eckhaus (1989) have studied the general case
of degenerate modulation equations while Doelman
& Eckhaus (1991) have looked at periodic and quasi-
periodic solutions. To find the quintic coefficient how-
ever, requires an even larger number of computations
due to nonlinear interactions.

The weakly nonlinear analysis of dunes presented
herein follows closely the weakly nonlinear analysis
of bars developed by Schielen et al. (1993). This is
slightly remarkable because a depth-averaged model
is used in the latter, whereas depth plays an essential
role in the dynamics of dune. However, in both cases,
the main difficulty in the analysis is the determina-
tion of the nonlinear coefficient of CGLE. Once de-
termined, the analysis of the Ginzburg-Landau equa-
tion itself follows rather straightforwardly. The non-
linear corrections of the shape lead for dunes as well
as for bars to steeper fronts and weaker slopes at the
lee sides. Furthermore, both bedforms decelerate with
respect to the linear theory. A spectral analysis will re-
veal more dynamic behaviour in the evolution of the
envelope and hence of the individual dunes.

REFERENCES

ASCE, T. C. (1963). Friction factors in open channels. J. Hy-
draulic Div. 89 (HY2), 97-143.

ASCE, T. C. (2002). Flow and transport over dunes. J. Hydraulic
Engng. 127, 726-728.

Coleman, S. E. & J. D. Fenton (2000). Potential-flow instability
theory and alluvial stream bed forms. J. Fluid Mech. 418,
101-117.

Colombini, M. (2004). Revisiting the linear theory of sand dune
formation. J. Fluid Mech. 502, 1-16.

Colombini, M. & A. Stocchino (2005). Coupling or decoupling
bed and flow dynamics: Fast and slow sediment waves at high
Froude numbers. Phys. Fluids 17 (3), 9.

Colombini, M. & A. Stocchino (2008). Finite-amplitude river
dunes. J. Fluid Mech. 611, 283-306.

Doelman, A. (1991). Finite dimensional models of the Ginzburg-
Landau equation. Nonlinearity 4, 231-250.

Doelman, A. & W. Eckhaus (1991). Periodic and quasi-periodic
solution of degenereate modulation equations. Physica D 53,
249-266.

Eckhaus, W. (1989). Strong selection and rejection of spatiallu
periodic patterns in degenerate bifurcations. Physica D 39,
124-146.

Engelund, F. (1970). Instability of erodible beds. J. Fluid
Mech. 42, 225-244.

Engelund, F. & E. Hansen (1967). A monograph on sedi-
ment transport in alluvial streams. Copenhagen, Denmark:
Teknisk Forlag.

Fredsge, J. (1974). On the development of dunes in erodible
channels. J. Fluid Mech. 64, 1-16.

Kennedy, J. F. (1963). The mechanism of dunes and antidunes in
erodible-bed channels. J. Fluid Mech. 16, 521-544.

Meyer-Peter, E. & R. Miiller (1948). Formulas for bed-load
transport. In Proc. 2nd Meeting IAHR, Stockholm, Sweden,
pp- 39-64.

Paarlberg, A., C. Dohmen-Janssen, S. Hulscher, & P. Termes
(2007). A parametrization of flow separation over subaque-
ous dunes. Water Resour. Res. 43, W12417.

Paarlberg, A., C. Dohmen-Janssen, S. Hulscher, & P. Termes
(2009). Modeling river dune evolution using a parametriza-
tion of flow separation. J. Geophys. Res. 114, FO1014.

Reynolds, A. (1965). Waves on an erodible bed. J. Fluid
Mech. 22, 113-133.

Schielen, R., A. Doelman, & H. de Swart (1993). On the non-
linear dynamics of free bars in straight channels. J. Fluid
Mech. 252, 325-356.

Stuart, J. & R. Di Prima (1978). The Eckhaus and Benjamin-Feir
resonance mechanisms. Proc. R. Soc. Lond. A 362, 27-41.
Wong, M. & G. Parker (2006). Reanalysis and correction of
bed-load relation of Meyer-Peter and Miiller using their own

database. J. Hydraulic Engng. 132, 1159-1168.



