Magma minted
Author:
Immir
Last Updated:
před 2 lety
License:
Creative Commons CC BY 4.0
Abstract:
A Pygments lexer for the Magma computer algebra language.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
A Pygments lexer for the Magma computer algebra language.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\documentclass{article}
\title{Magma Pygments}
\author{`Immir'}
\date{March 2023}
\usepackage[margin=5cc]{geometry}
\parindent=0pt
\parskip=1ex
\usepackage{minted,xcolor}
\usemintedstyle{lovelace}
\definecolor{mintbg}{gray}{0.95}
\setminted{bgcolor=mintbg, frame=lines, rulecolor=\color{gray!50}}
\setminted[magma.py:Magma -x]{mathescape=true} % math mode in comments
\begin{document}
\maketitle
% ----------------------------------------------------------------------
\section{Introduction}
This is a demo of a simple Pygments~\cite{pygments} lexer for the
language of the computer algebra system Magma~\cite{magma}. Together
with the \LaTeX{} \texttt{minted}~\cite{minted} package, this allows
syntax-highlighted Magma source code to typeset in documents.
In the Appendix one can find the Python source for this lexer --
formatted using the standard Pygments lexer for Python for comparison
with the Magma output in the examples following.
At some point a \texttt{git} repo will likely be published for anyone
wishing to contribute. For the moment, anyone who knows \textit{Immir}
knows how to contact him$\ldots$
% ----------------------------------------------------------------------
\section{Some Magma examples}
Some intrinsics from a small Magma package:
\begin{minted}{magma.py:Magma -x}
// file: intrin.m
intrinsic '@' (x, f::RngUPolElt) -> .
{ Allow user to evaluate polynomials using usual notation: $f(x)$. }
return Evaluate(f, x);
end intrinsic;
map := func< f, xs | [ f(x) : x in Eltseq(xs) ] >;
fst := func< xs | xs[1] >;
snd := func< xs | xs[2] >;
intrinsic CRT (T::SeqEnum[Tup]) -> .
{ Compute CRT from sequence of pairs <residue,modulus>. }
return CRT(map(fst,T), map(snd,T));
end intrinsic;
intrinsic PohligHellman (g,h,p::RngIntElt,e::RngIntElt) -> RngIntElt
{ Compute discrete log $x$ where $g^x = h$ and $g$ has order $p^e$. }
return e gt 1 select x0 + p^e0*x1
where x1 := recurse(g^(p^e0), h/g^x0, p, e1)
where x0 := recurse(g^(p^e1), h^(p^e1), p, e0)
where e1 := e - e0
where e0 := e div 2
where recurse := $$
else Rep({ d : d in [0..p-1] | g^d eq h });
end intrinsic;
intrinsic PohligHellman (g,h,n::RngIntElt) -> RngIntElt
{ Compute discrete log $x$ from $g^x = h$ where $g$ has (hopefully smooth!) order $n$. }
return CRT([ <PohligHellman(g^(n div p^e),h^(n div p^e),p,e), p^e>
where p,e := Explode(f) : f in Factorisation(n) ]);
end intrinsic;
intrinsic PohligHellman (g,h) -> RngIntElt
{ Compute discrete log $x$ from $g^x = h$ where $g$ has hopefully smooth order. }
return PohligHellman(g,h,Order(g));
end intrinsic;
\end{minted}
Some user code:
\begin{minted}{magma.py:Magma -x}
PSL27 := PermutationGroup< 8 | (2,3,5)(6,7,8), (1,2,4)(3,5,6) >;
S := MatrixAlgebra< FiniteField(2), 3 |
[ 0,1,0, 1,1,1, 0,0,1 ], [ 1,1,1, 0,1,1, 0,1,0 ] >;
M := GModule(PSL27, S);
M: Maximal;
L := Lattice("E", 8);
S := ShortestVectors(L);
#S; // 120
KissingNumber(L); // 240
w := RSpace(RationalField(), 8) ! [ -1/6, 1/6, -1/2, -1/6, 1/6, -1/2, 1/6, -1/2 ];
C, d := ClosestVectors(L, w);
d; // 8/9
{ Norm(v): v in C }; // { 0, 2 }
{ Norm(v - w): v in C }; // { 8/9 }
\end{minted}
Transcript of a session:
\begin{minted}{magma.py:Magma -x}
> P<x> := PolynomialRing(Rationals());
> f := x^3 + x + 1;
> Evaluate(f,1);
3
> f(1); // this doesn't work?! ridiculous!
>> f(1);
^
Runtime error in '@': Bad argument types
Argument types given: RngIntElt, RngUPolElt[FldRat]
> Attach("intrin.m");
> f(1);
3
> g := Integers(2^16384)!3;
> h := g^RandomBits(16384);
> time x := PohligHellman(g,h);
Time: 17.130
> g^x eq h;
true
> PohligHellman(g,g^1337) where g is Random(GL(3,127));
1337
\end{minted}
% ----------------------------------------------------------------------
\section{Installation}
There are at least 3 simple ways to use this ``package'' with the
{\LaTeX} \texttt{minted} package. In all cases, you have to run with
the \texttt{-shell-escape} to \LaTeX{}; \textit{e.g.,}
%
\begin{minted}{bash}
bash$ pdflatex -shell-escape file.tex && xpdf file.pdf
\end{minted}
\subsection{Local copy of lexer}
Place the \texttt{magma.py} file in the working directory and use
\begin{minted}[escapeinside=||]{tex}
\begin{minted}{magma.py:Magma -x}
// your magma code here
\end{minted||}
\end{minted}
\subsection{Execute the lexer script}
If you will be using a lot of \texttt{magma} code snippets, it is
unpleasant to have to use the \texttt{magma.py:Magma -x} name over and
over again. An alternative is to give the \texttt{magma.py} script
execute permission, then in the preamble after loading \texttt{minted}
do the following:
\begin{minted}{tex}
\renewcommand{\MintedPygmentize}{./magma.py}
\end{minted}
Now your code segments can use the simpler \texttt{magma} format:
\begin{minted}[escapeinside=||]{tex}
\begin{minted}{magma}
// your magma code here
\end{minted||}
\end{minted}
\subsection{Install globally}
Details coming later.
% ----------------------------------------------------------------------
\begin{thebibliography}{9}
\bibitem{pygments} \texttt{https://pygments.org}.
\bibitem{magma} Wieb Bosma, John Cannon, and Catherine Playoust, The
Magma algebra system. I. The user language, J. Symbolic Comput., 24
(1997), 235–265.
\bibitem{minted} \texttt{https://github.com/gpoore/minted}.
\end{thebibliography}
\appendix
% ----------------------------------------------------------------------
\section{Magma.py}
Source code for the current version of \texttt{magma.py}.
\inputminted{python}{magma.py}
% ----------------------------------------------------------------------
\section{Tests}
% define any macros needed in documentation
\def\SL{\mathop{\mathrm{SL}}}
Here are some tests based on code extracted from various Magma packages.
\begin{minted}{magma.py:Magma -x}
intrinsic Conjugates(G::Grp, H::Grp: Limit := 10000000) -> {}
{The set of conjugates of H by elements of G}
require Type(G) eq Type(H) and H subset G:
"Argument 2 is not a subgroup of argument 1";
N := Normalizer(G, H);
require Index(G, N) le Limit:
"Number of conjugates of H in G is more than " cat Sprint(Limit);
if Type(G) eq GrpPC then
return { PowerGroup(G) | H^t: t in Transversal(G, N) };
end if;
return {H^t: t in Transversal(G, N)};
end intrinsic;
/* Given an ideal corresponding to an absolutely irreducible trace tuple t and hence
* an absolutely irreducible representation $\Delta\colon F_2 \to \SL(3,K)$, find a tuple of
* nine words $(w_1, \ldots, w_9)$ such that $(\Delta(w_1), \ldots, \Delta(w_9))$ is a basis of $K^{3 \times 3}$.
*
* Note that $(\Delta(w_1), \ldots, \Delta(w_9))$ is a basis if and only if the matrix
* $(\mathop{tr}(\Delta(w_i)\Delta(w_j)))_{i,j}$ has full rank, hence non-zero determinant.
*/
L3FindBasis := function(I)
if exists(b){ b : b in possibleBases | GramMatrixDeterminant(b, I) ne 0 } then
return b;
end if;
error "not absolutely irreducible";
end function;
intrinsic IsInTwistedForm( x::GrpLieElt, c::OneCoC ) -> BoolElt
{Returns true iff $x\in G(K)$ is an element of the twisted group of Lie type $G_c(k)$}
G := Parent(x);
require G cmpeq Domain(Group(GammaGroup(c)))
: "Parent(x) and the cocycle do not match";
Gamma, m := ActingGroup(GammaGroup(c));
return forall{ i : i in [1..Ngens(Gamma)] |
x eq x @ FieldAutomorphism(G, m(Gamma.i)) @ c(Gamma.i) };
end intrinsic;
intrinsic Bezoutian(H::HypGeomData) -> RngIntElt // e.g. [1,2,3],[5] -> 5
{The resultant of the defining polynomials of the hypergeometric data}
f,g:=DefiningPolynomials(H); return Resultant(f,g); end intrinsic;
\end{minted}
Here are some examples for testing edge cases.
\begin{minted}{magma.py:Magma -x}
intrinsic myintrin1(G :: GrpMat[FldFin]) -> {}, [], {RngIntElt}
{ some documentation }
return {}, [], 0; end intrinsic
intrinsic myintrin2(x::{}, y::{[]}) -> {}
{ some documentation }
return {}; end intrinsic
intrinsic myintrin3(G:: GrpMat : Degree := "All", Set := {}) -> BoolElt, {}
{ { { { some } more } documentation { with { [ crazy ] braces } } } }
return false; end intrinsic;
\end{minted}
Here are examples of valid Magma code that fail to format correctly;
these examples are currently considered too extreme to worry about.
\begin{minted}{magma.py:Magma -x}
// incorrectly matches braces within /* */ comment
intrinsic junk(a) /* {} */ { docs }
return a+1; end intrinsic;
// can't have comment between intrinsic name and open paren
intrinsic junk /* */ (a) /* comment
*/ { doc } printf "a = %o\n", a; end intrinsic;
\end{minted}
\end{document}