% Mantido pelo colegiado do curso de Bacharelado em Sistemas de informação do Centro Universitário Católica de Santa Catarina
% {juliano.marcelino,rodrigo.gregori}@catolicasc.org.br
% Este arquivo pode ser redistribuído e/ou modificado sobre a licença pública GNU versão 2.
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\title{There Is No Largest Prime Number}
\date[ISPN ’80]{27th International Symposium of Prime Numbers}
\author[Euclid]{Euclid of Alexandria \texttt{euclid@alexandria.edu}}
\usetheme{catolicasc}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{There Is No Largest Prime Number}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number. \end{theorem}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime
number not in the first $p$ numbers.
\end{enumerate}
\end{frame}
\begin{frame}{A longer title}
\begin{itemize}
\item one
\item two
\end{itemize}
\end{frame}
\end{document}