SPINS 3 Tables
Author
Erin De Pree
Last Updated
před 5 lety
License
Creative Commons CC BY 4.0
Abstract
Templates for tables in SPINS lab 3 for PHYS 462 Quantum Mechanics at SMCM.
Templates for tables in SPINS lab 3 for PHYS 462 Quantum Mechanics at SMCM.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SPINS 2 from Oregon State University %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[12pt]{article}
% colors
\usepackage[dvipsnames,svgnames,x11names]{xcolor}
% graphics
\usepackage{graphics}
% TikZ picture environment
\usepackage{tikz}
\usetikzlibrary{arrows,scopes,fadings}
% Math formatting
\usepackage{amsmath}
% More math
\usepackage[fleqn,tbtags]{mathtools}
% Physics symbols
\usepackage{physics}
%\usepackage{mdwlist}
% tables
\usepackage{tabu}
%Page Margins
\usepackage{geometry}
\geometry{top=1.5in,left=1in, right=1in, bottom = 1.5in}
% Useful commands
% Answer in write up
\newcommand{\ans}[1]{\textbf{\color{Black} #1}}
% Write up on the board
%\newcommand{\board}[1]{\textbf{\color{Red} #1}}
% ask question
%\newenvironment{question}{\begin{quotation} \noindent \textbf{\color{Blue} Question}\:\:}{\end{quotation}}
%\newcommand{\ask}[2]{\begin{quotation} \noindent {\color{Blue} \textbf{Question:}\:\: #1} \\ {\color{Purple} #2}\end{quotation}}
% answer
%\newcommand{\ans}[1]{{\color{Purple} #1}}
% Vectors
\renewcommand{\vec}[1]{\boldsymbol{#1}}
\newcommand{\unitvec}[1]{\boldsymbol{\hat{#1}}}
\begin{document}
\title{SPINS Lab 3 Tables}
\author{Quantum Mechanics}
\date{Fall 2019}
\maketitle
%\section*{Table templates}
\tabulinesep=4mm
{ \large Unknown state $\ket{\psi_1}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{1cm}
{ \large Unknown state $\ket{\psi_2}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{2cm}
{ \large Unknown state $\ket{\psi_3}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{1cm}
{ \large Unknown state $\ket{\psi_4}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\newpage
{ \large Spin 1 Interferometer}
\vspace{3mm}
\begin{tabu} to \linewidth {| X[c] | X[c] | X[c] | X[c] | X[c] | X[c] | X[c] |}
\hline
& \multicolumn3{c|}{Experiment} & \multicolumn3{c|}{Theory} \\
Beams & $\mathcal{P}_{+1}$ & $\mathcal{P}_0$ & $\mathcal{P}_{-1}$ & $\mathcal{P}_{+1}$ & $\mathcal{P}_0$ & $\mathcal{P}_{-1}$ \\
\hline
\everyrow{\hline}
$\ket{1}_x$ & &&&&& \\
$\ket{0}_x$ & &&&&& \\
$\ket{-1}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{0}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{-1}_x$ & &&&&& \\
$\ket{0}_x$, $\ket{-1}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{0}_x$, $\ket{-1}_x$ & &&&&& \\
\end{tabu}
\end{document}